D IGITAL

SYSTEMS

::/-) /
@ L v
\ s
¢ o '
_——

31-

.//
/ /
(*— / /
;/ H+
@
// . .
TN
74 i \\\

FUNDAMENTALHHO)

Multicycle CPU FSM

CS-173 Fundamentals of Digital Systems

Mirjana Stojilovic
Spring 2025

https://mirjanastojilovic.github.io/cs173/index.html

Previously on FDS

* Processor Implementations

« Single-cycle vs. multicycle CPU
« Multicycle CPU

© EnelEva / Adobe Stock

CS-173, © EPFL, Spring 2025

Recall: Single-Cycle vs. Multicycle CPU

= |f all instruction steps are performed in a single clock cycle,
we have a single-cycle CPU implementation

Note: These two registers could

The longest combinational
be the same one (e.g., PC)

path (the critical path)
determines the maximum
operating frequency

ox !

Register
Register

Recall: Single-Cycle vs. Multicycle CPU

= Alternative implementation is a multicycle CPU

* In a multi-cycle implementation, one or more instruction steps take one
clock cycle, and consequently, some instructions take multiple clock cycles

Note: These two registers could
be the same one (e.g., PC)

Critical path is

Critical path is
now reduced

now reduced

Note: This is an example,
Other multi-cycle
Implementations

are also possible

Register
Register
Register

o 1]

Recall: Is Single-Cycle CPU More Efficient?

= No. Every instruction takes one cycle. .., is limited by the longest of all
paths that instructions take (the critical path).

= |n a multi-cycle CPU, one or more instruction steps take one cycle.
f . INCreases as the critical path is shorter now.
Instructions that require fewer steps will likely be executed faster,
reducing the program's overall execution time.

Recall: Multicycle CPU

vs. Single-Cycle CPU

= A single memory unit for both instructions and data

- Why? Having more than one cycle available (more time to read
instructions, read/write data) allows memory sharing

= A single ALU instead of an ALU and two adders
« Why? The same ALU can be used in different clock cycles

= Additional registers to hold the outputs of the functional units
until the value is used (consumed) in a subsequent clock cycle
« Why? Ensure that the value to be used is “stable” for the entire cycle

Recall: A Simple Multicycle CPU

= Recall: Let us build a simple CPU supporting the following subset
of RISC-V instructions for simplicity

* R-type arithmetic-logical instructions
* add, sub, and, or

 Memory instructions
* |oad and store word

e Control flow

* branch if equal

Recall:

A Simple Multicycle CPU

CS-173, © EPFL, Spring 2025

PCWriteCond

e K\\

\'.
".
L1

PCSource

—‘f\\- _:I.1I DI:-I‘I'ﬁI.I'r te ill| Dulputb I'll ALUOD
lorD | II
ALUSrcE
MemRead Control |
MemWrite I|I .I ALUSIcA
MemtoReg Op | RegWrite
III [B_ﬂ] II-
IRWrite \,
N4
0
Fe M J, | Read
2 Address register 1 read | T
L M Instruction | Read data 1 _L
emory " |- . :
register register 2
Membata & _ Registers
Write Read | [
| Write register data 2 .
— |4
dete) Write T
data -
M
u
X
—=, 1
Memory |_
data Imm
. »
register Gen

Crez9

By = =

U
| control |

S

ALUOuUt

| —

8

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

Recall: Additional Registers

Multicycle CPU Datapath, High-level View

One register per output

Instruction register (IR) — for the 32-bit of the register file, to hold

instruction word read from memory the operands for the ALU A register for ALU output
Instruction
- register
PC He» Address » Data NN
Instruction o> Reqister #
Memory ©OFdata|—¢ Registers >ALU ALUOut H
&> Register #
Memory . B
Data | data Ge Register # [
register

Memory data register (MDR)— for the 32-bit

CS-173, © EPFL, Spring 2 data word read from memory

9
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

Recall: Additional Multiplexers

Sharing Functional Units

A MUX to select between PC and ALU output for the next memory address

A MUX to select between the PC
and a register from the register file

PC

CS-173, © EPFL, Spring 2025

Address

Memory
MemData

Write
data

Instruction
register

Memory
data
register

Y

Read
register 1 Read
Read data 1
register 2
Wit Registers

rite

. Read

register data 2

Write
data

Imm
Gen

Zero

ALU a1y
result

ALUOut

A 3-input MUX to allow
the ALU to increment
the PC by 4 or compute
branch target address

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

10

Recall: A Multicycle CPU

With Some Control Lines Shown

Determines if

the address to

the memory is
supplied from ALUOut
register or the PC

CS-173, © EPFL, Spring 2025

- lorD MemRead MemWrite [IRWrite RegWrite ALUSrcA
0
PC 16~ M Instruction | Read 0
g Address [19—15] register 1 Read I\lil
Instruction data 1 X
MemData Instruction |_ _ Registers ALU ALY »| ALUOUL 1
[11-7] Write Read resuy
| write ' L register data 2 lo—(O M
data Instruction [> . 41 u
register 5 Write oo X
data '\
Instruction M
[31-0] .
|' 1
Memory Imm
data * Gen [ALU
register control
Instruction [6-0]
|
MemtoReg ALUSrcB ALUOp

Recall: A Multicycle CPU

With Some Control Lines Shown

lorD MemRead MemWrite [IRWrite RegWrite ALUSrcA
- = T - b
- -
P -
v
7/ P — | ==
J _ EC4 M Instruction | Read 0
If asserted, memory _ -~ u [Address [19-15] | register 1 o M
contents designated . y Instruction | Reaq data x S
by th dd i) T emory [24=20] " | register 2
y the address.inpu MemData |+ ALU
/ Instruction |_ Registers ALU »| ALUOUL 1
are put on the output (11-7] Write Read result]
/ | writ register le—- O
/ daTae Instruction ¢ > data 2 4 1 le /
I register 5 Write oo X
data '\
If asserted, memory nsiruction u
contents designated ;
by the address input Memory { i
are replaced by —| data | ¢ Gen [ALu
register control
the value on the
Write data input nstrucion (6-0]
CS-173, © EPFL, Spring 2025 |
MemtoReg ALUSrcB ALUOp

12

Recall: A Multicycle CPU

With Some Control Lines Shown

lorD MemRead MemWrite [IRWrite RegWrite ALUSrcA
ek o ———t == —) I =
- -— - - -~
- P
Ve Z
7’
The output of 1
. . PC (e»{0 A Read 0
the memory is written M Ingtruction .| Rea
. . . u Address j [19-13] register 1 Read M
into the instruction X . !
: . Iistruction Read data 1 X .
register (|R) Memory '/ [24-20] "| register 2 1 °re
MembData [#" Instruction |_ _ Registers AUALUL L A yout -
. | [11-7] Wn?e Read resuy

If asserted, the register | Write . 7 , (| "egIster yata 2 +—{"m /

. . dats Instruction ¢ - 41 u
on the Write reg. input L _ A register 5 wie o x
. . . - .t L
IS written with the value Instruction "l*} = N
on the Write data input 131-0] x

Memory Imm
. . —- data ¢ ALU
Determines if the value fed to register Gen e
the register file Write data input
comes from the ALUOut 1=-=-~_ Instruction [6-0]
o ~
register or from the memory o
data register (MDR) S |
T = = = MemtoReg ALUSrcB ALUOp

13

Recall: A Multicycle CPU

With Some Control Lines Shown

Determines whether
the first ALU operand
IS register A

or the PC

Determines whether
the second ALU
operand is register B,

constant 4, or the sign-

extended immediate

CS-173, © EPFL, Spring 2025

lorD MemRead MemWrite [IRWrite RegWrite ALUSrcA
o ———— —>
7’
/
PC Instructior!’ .| Read ?VI
Address |- J19-15] register 1 o 4 y
A Instruction Read data 1 X
_—— = = > : Zero
M[::mo;y [24-20] register 2 ! ALU
emData ¢+ Instruction |_ _ Registers ALU »| ALUOUL 1
[11-7] Write Read - resuy
| Write , _|register a2 T M
data Instruction [> . 41 u
register 5 Write oo X
data '\
Instruction M
[31-0] .
|' 1
—— |- Memory i Imm
-~ - — dz_lta Gen [ALU
=~ J_register control
<
N\
\\ Instruction [6-0]
N
~
S~ < |
MemtoReg T T = = = —» ALUSIcB ALUOp

14

Recall: A Multicycle CPU

With Some Control Lines Shown

lorD MemRead MemWrite [IRWrite RegWrite ALUSrcA
0
PC &> M Instruction N Regd ?VI
g Address [19-15] register 1. oo u
1 Instruction | Read data 1 X
M[::mogyt .. [24—20] " | register 2 ! ALU zero
embiata Instruction |_ _ Registers ALU »| ALUOUL 1
[11-=7] Write Read - resuy
. . . register P—
Determines if ALU | e Instruction 4 T data2 it e
performs addition register 0 st o X
(PC = PC+4, or branch nsiruction u b
target address), h
subtractl.on - ===t __] | [Memory -
(comparing two — “data ~|_¢ Gen [ALU
i register ~ |
registers for a branch contro
if equal instruction), T R e
or another operation nStructioro-9] =3 S
CS-173, © EPFL, Spring 2025 |
MemtoReg ALUSrcB ALUOp

15

R e Ca I I) _r PCWriteCond [PCSource
° — [\ : .
;o — PCWrite | \
1 S b { Outputs | ALUOp
Multicycle CPU Control — oo |
MemRead | Control -
— | ALUSrcA
MemWrite | |
MemtoReg | Op RegWrite
L 6-0] S
H'I .,u"',..' r T e I.".\ .
N
== —>
- ~ Pe 1 _| Read 0
-~ Address | register 1 Read I:I
- -
, s Memo Instruction | | | _| Read data 1 L\"U
/ MemDr:ta register | register 2
Regist
. [+ | write egis ‘;’:ﬂd - ALUOut
The opcode field of | Wit registler jatan [+ 1A
o 0 0 dala . — -
the instruction (register IR) o\ it o
determines the operation M
of the ALU via ALUOp T 1 N
o o o | . M I_-'- ".I
(if not an R-type instruction, Gt |1 _— [aw
register Gen | control |
but memory access or branch) g
CS-173, © EPFL, Spring 2025 16

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

Recall:

Multicycle CPU Control

Conditional PC write:

Causes -

a write of the PC if

the branch condition
is also true (if the Zero
output from the ALU
is also active).

Unconditional PC write:
causes an

unconditional write of -

the PC, during normal
increment (PC = PC + 4)

CS-173, © EPFL, Spring 2025

-—

PCWriteCond

/,.-)

PCSource

-

PC

ALUOuUt

."...- II-: :'I:"\""\.'Ir 1.'&‘.," -'I. ll' -\" |.||:| h = — -~
R [Outputs | ALUOp -
’ 4 lorD | — ~ |
7 l M R 1 Control ALUSrcB A\
ViEemmeac ontro — .
I/ — Tausen Selects the next PC value:
ViemWrite | .
) b omores | 00 | reawne PC+4or branch target address
: — [6-0] /
, H.'l.'f'l.'l r T"' I"._‘
/ p—y
'l 3
/ +T
{
7 1 .| Read ?.1
Address / register 1 Read N y
M / Instruction _ | Read data 1 L QU
empry register || " | register 2
MpmData & . Registers
/ Write Read
_.,’ﬁ.rrita register data 2 | B r#— 0
,’ data , 41
/ 5 Write s
data =
M a
u
X o
— :,-* \\x
Ls| Memory |_ ALU
data + Imm | ALU]
register Gen I"-. control

17/
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

Recall: Actions of the 1-bit Control Signals

Summary

Signal name

Effect

If asserted, the register on the Write reg. input is written with the value on the Write
data input

Determines whether the first ALU operand is register A or the PC

If asserted, memory contents designated by the address input are put on the output

If asserted, memory contents designated by the address input are replaced by
the value on the Write data input

Determines if the value fed to the register file Write data input comes from
the ALUOut register or from the memory data register (MDR)

Determines if the address to the memory is supplied from ALUOut register or the PC

The output of the memory is written into the instruction register (IR)

The PC is written; the source is controlled by

The PC is written if the Zero output from the ALU is also active

Recall: Actions of the 2-bit Control Signals

Summary

Signal name

Value Effect

00 addition

0T subtraction

10 The funct field of the instruction determines the operation of the ALU
(distinction between add, sub, and, and or; they all share the same opcode)

00 The second input to the ALU comes from the register B

0T The second input to the ALU is the constant 4

10 The second input to the ALU is the immediate generated from the instruction
register (IR)

00 Output of the ALU (PC+4) is sent to the PC for writing

01 The contents of the ALUOut register (the branch target address)
are sent to the PC for writing

10 Additional fu nctionality (not covered in this example, ignore)

CS-173, © EPFL, Spring 2025

20

Let's Talk About

« Breaking the instruction execution into cycles - .
. Multicycle CPU FSM |

CS-173, © EPFL, Spring 2025

© EnelEva / Adobe Stock

21

Learning Outcomes

= |ist the instruction steps and explain them
= Draw and explain the multicycle CPU FSM
= Quantity and compare CPU performance

Quick Outline

» |nstruction execution steps
* |nstruction fetch
Instruction decode and operand fetch

Execution, memory address computation,
or branch completion

Memory access or R-type instruction completion
Memory read completion step

= Multicycle CPU FSM
= Complete FSM
= Example: Compute CPIin our multicycle CPU

CS-173, © EPFL, Spring 2025

© EnelEva / Adobe Stock

23

Instruction Execution Across Cycles

» To determine which control signals are needed and their setting,
we need to look at what should happen in each CPU cycle

= \When deciding how to break instruction execution into cycles,
the goal is performance

= \We break execution into a series of steps, each taking one cycle,
attempting to keep the amount of work per cycle roughly equal

Instruction Execution Across Cycles

Contd.

= | et us restrict each step to contain at most
* ONE Memaory access
* One reqister file access
« an ALU operation

= The CPU cycle could be as short as the longest of the above

= At the end of every CPU cycle, any data needed on a subsequent
cycle must be stored in a register

= Edge-triggered design: We can continue to read the current value
of a register; the new value does not appear until the next cycle

Instruction Execution Across Cycles

Contd.

= VValues required by subsequent cycles must be kept constant for
the duration of at least the subsequent cycle:

« Major state elements
« Program counter: PC
 Register file, memory
« Temporary registers that are written on every clock cycle
At the output of the register file: Aand B
« At the memory output, memory data register: MDR
At the output of the ALU: ALUOut
« Temporary register with write control
* Instruction register: IR

In a Single-Cycle CPU Datapath...

= Each instruction uses a set of datapath elements to carry out
Its execution

= Many of the datapath elements operate in series,
using the output of another element as an input

= Some datapath elements operate in parallel:
* £E.g., PCisincremented and the instruction is read at the same time

In a Multicycle CPU Datapath...

= All operations in one instruction step occur in parallel
within one clock cycle

» Successive instruction steps operate in series
in different clock cycles

= The limitation of one ALU operation, one memory access,
and one register file access determines what can 'fit" in
one instruction step (one cycle)

CS-173, © EPFL, Spring 2025

29

Breaking the Instruction Execution...

...into Clock (CPU) Cycles

Five steps

= |[nstruction fetch

= |nstruction decode and register (operand) fetch

= Execution, memory address computation, or branch completion
= Memory access or R-type instruction completion

= Memory read completion

CS-173, © EPFL, Spring 2025 30

Step 1

Instruction Fetch

= Fetch the instruction from memory and compute the address of the next
instruction in the program sequence

* IR <= Memory [PC] Note: deliberate use of nonblocking Verilog
* PC k= PC + 4 operator symbol <=; it indicates that right-
hand sides are evaluated and then all
assignments are made, which is effectively
how the hardware executes during the cycle

= Operation

« Send the PC to the memory as the address, perform a memory read,
and write the fetched instruction to the Instruction Register (IR)

 Increment the PC by four to prepare for the subsequent instruction
« Save the incremented instruction address in the PC

CS-173, © EPFL, Spring 2025 31

Step 1

Instruction Fetch

Assert MemRead

Set lorD to zero,
to select the PC as
the source of the
memory address

Assert IRWrite

Set ALUSIrcA,
ALUSIrcB, and
ALUOp so that
the ALU computes
PC=PC+4

CS-173, © EPFL, Spring 2025

m
n
I

e K\\

||F- PCWriteCond .-"f . H‘-. PCSource
P | M ; II|I I'.
_I‘ PCWrite | Outputs | ALUCp
lorD | |
ALUSrcE
MemRead Control |
MemWrite | | ALUSTcA
MemtoReg \ Op | Regwrite
Y [6=0]
IRWrite
S > \“\ - g
- = L
~
-~
— — w— = »
— = TRead {:.1
Address o - register 1 Read v
Instruction | Read data 1 L X
Memory : e . : 1
register register 2
Membatarre=) & N Registers
4 Write Read
> h
] Writa’ ¢ register data 2 .4 . .[:
- ot Write T
: — | L:d data - 2
—_— L B p—— = — = = = = = - N *
~ x -
~ ~ |— 1 __r’f \\\"
\ Lw| Memory { ALy |
~ data + Imm :
T~ register Gen | control |
Iy — \ J
T — | < __\-- -..’/.-"

ALUOuUt

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

Step 1

Instruction Fetch

Update PC:
- set PCWrite
- set PCSource to zero

PC increment and instruction
memory access occur in
parallel. The new PC value is
not visible until the next
cycle. Incremented PC will
also be saved in ALUOut, but
this action is harmless.

CS-173, © EPFL, Spring 2025

—_——

TN
/

/ "x_‘_
PCWriteCond [/ PCSource
N PCWrite [
Nk e e { Outputs | ALUCP
- lorD '| ‘
> - ALUSrcB
/ MemRead ‘ Control P——rooroeee_ . - - | —
MemWrite | | ’&‘LUSEE’&‘_ - _
0 | -
MemtoReg | [B—Ii"]]’ - FegWrite
IRwite \ I/
L/
- - ~
l | Read ?'JI
Address register 1 Read ;
Instruction |Reaq datal 1, x
Memory . - e - 1
register register 2
MemData o . _ Registers ALUOut
Wn_te Read
| Write register "o ra——
4 1
data) Write -': 5
data "
M
u
X .
— '1 //. \-\.
'
Memory |_ [aLU \
data . Imm ' L
register Gen I'-., control /
\.x‘-- -..‘./.-"

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

Step 1: Summary

Instruction Fetch

= Operations and control signals involved
Select PC as the source address
Perform a memory read
Write the instruction from the memory into the Instruction Register
 Increment the PC by four
Send the PC to the first input of the ALU
Send 4 to the second input of the ALU
Instruct ALU to perform addition
« Save the incremented instruction address in the PC
Send ALU output to the PC
Write to the PC

CS-173, © EPFL, Spring 2025

34

CS-173, © EPFL, Spring 2025

35

Step 2

Instruction Decode and Register (Operand) Fetch

= |n the previous and this step, we do not yet know what the instruction is

= We can only perform actions that are either

 Applicable to all instructions (e.g., fetching the instruction in step 1) or
« Not harmful, in case the instruction isn't what we think it might be

= \What can we do?

= (1) Canread rs1 and rs2 registers
* It's not harmful to read them, even if not necessary
» Those values may be needed later, so we keep them in temporary registers A and B

CS-173, © EPFL, Spring 2025

36

Step 2

Instruction Decode and Register (Operand) Fetch

= |n the previous and this step, we do not yet know what the instruction is

= We can only perform actions that are either

 Applicable to all instructions (e.g., fetching the instruction in step 1) or
« Not harmful, in case the instruction isn't what we think it might be

= \What else can we do?

= (2) Can compute branch target address with the ALU

* It's not harmful because we can ignore this value if the instruction turned out
not to be a branch

« The value may be needed later, so we keep it in register ALUOut

CS-173, © EPFL, Spring 2025

37

Step 2

Instruction Decode and Register (Operand) Fetch

» Q: Why do these optimistic actions?

= A: Performing "optimistic” actions early helps decrease
the number of cycles needed to execute an instruction

= Q: What makes doing these optimistic actions possible?

= A: The reqularity of the instruction formats

» For example, if the instruction has two register operands,
they are always in the rs1 and rs2 fields

CS-173, © EPFL, Spring 2025

38

Step 2

Instruction Decode and Register (Operand) Fetch

= Recall: Step 2 performs a few “optimistic” actions, as they do not hurt, but
may prove helpful later when it is known what the instruction is
e A <= RF[Instruction Register[19:15]]
* B <= RF[Instruction Register[24:20]]
e ALUOut <= PC + offset

= Operations
« Access register file (RF) and read registers rs1 and rs2
« Write to registers A and B; they are overwritten every clock cycle

« Compute the branch target address and place it in the ALUOUt register,
from where it will be read in the next clock cycle if the instruction is a branch

CS-173, © EPFL, Spring 2025

39

Step 2

Instruction Decode and Register (Operand) Fetch

MemRead | Control |

Set ALUSTrcA to zero
(PC sent to ALU)

Set ALUSrcB so that ~|PC
the offset is sent to -
the ALU

SetALUOpsothat _ _ _ _

the ALU adds

Register file access and
computation of branch
target occur in parallel

CS-173, © EPFL, Spring 2025

MemWrite I|I I| ALUSrcA
MemtoReg | | RegWrite
IRWrite
 — -
- - +T
0
u J, | Read
g Address reottor 1 .
B i data 1
T “Mémory— Instruction | | | | Read
~ register register 2
MemData =" ~ <) h Registers
\ Write
- register Read
| Write \ [ead
T Eati = h [~ Write
=~ -~ ~ data
=~ ~
~ -—
\
¥
s Memory
data
register

[ALu |
i —

i control |

W,)
S

ALUOuUt

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

Step 2: Summary

Instruction Decode and Register (Operand) Fetch

= Operations and control signals involved
» Access the register file and read registers rs1 and rs2
« Write to the registers A and B; they are overwritten every clock cycle

« Compute the branch target address and place it in the ALUOut register,
from where it will be read on the next clock cycle if the instruction is a branch

PC sent to the ALU
PC offset (for computing branch target address) sent to the ALU
ALU instructed to perform addition

« The register file access and branch target address computation occur in parallel

CS-173, © EPFL, Spring 2025

41

CS-173, © EPFL, Spring 2025

42

Step 3

Execution, Memory Address Computation, or Branch Completion

= ALU operates on the operands prepared in the previous cycle,
performing a function depending on the instruction class

« Memory address computation (load, store) or
« Arithmetic-logical instruction (R-type) or
 Branch if equal

CS-173, © EPFL, Spring 2025

43

Step 3

Memory Address Computation

= Recall: ALU operates on the operands prepared in the previous cycle,
performing a function depending on the instruction class

= Memory address computation
» ALU adding the operands to form the memory address

CS-173, © EPFL, Spring 2025

44

Step 3 -

Memory Address Computation

MemRead | Control |
ALU lS addlng MemWrite III .I ALUSrcA
.'n 0 | airit
the operands to form MemtoReg | T [Reawrte
IRWrite \
the memory address %__} R I N
e n
Set ALUSrcA to 1, ————pr==== T T "
so that register A is
. . PC E:d Read
the first ALU input M| ddress | register 1 g
X
1 Instruction Read 9331
——————— L Memo . —1* - .
Set ALUSrcB so that - mgﬁ_* register rogiter2
"k _ egister L+
the output of ~ o -+ Write 2 o ALUOut
: | write \ register ot 2
the offset generation data N N
o 1 it
unit is the second ~ data
ALU input T T === =
e ™,
_______ L .| Memory | \"'.
Set ALUOp so that 1= === | data | | .| tmm Pamen =
TogTster . Gen control |
the ALU adds M
= - —_ e S |
CS-173, © EPFL, Spring 2025

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

Step 3: Summary

Memory Address Computation

Memory address computation—operations and the control signals involved
» ALU adding the operands to form the memory address
First ALU input is register A
Second ALU input is the offset
ALU instructed to perform addition

CS-173, © EPFL, Spring 2025

46

Step 3

R-type instruction execution

= Recall: ALU operates on the operands prepared in the previous cycle,
performing a function depending on the instruction class

= Arithmetic-logical instruction (R-type)
e ALUOut <= A op B
« ALU performing the operation specified by the opcode

» Recall: Distinction between add, sub, and, and or cannot be made based
on the opcode (it is the samel); the funct field serves the purpose

Step 3

R-type instruction execution

ALU is performing
the operation on two
values read from
the register file in
the previous cycle

Set ALUSrcA to 1 and
ALUSrcB so that both
ALU operands are from
the register file

Set ALUOp so that
funct field from the IR
is used to determine
the ALU operation
(add, sub, and, or)

CS-173, © EPFL, Spring 2025

PC

MemRead Control
| o
MemWrite | ,' ALUSTEA
MemtoReg | Op | RegWrite
. [6-0] /
EWrite
._ __._.' i — = w— ’
M L__/ _ - -
’ —1
’
/"T
Y4
/
/ | Read
Address _ 7/ register 1 Read | [
T datat | A
M ~|7 | Instruction | | | _| Read —L
I sm register " | register 2
: MemData + - Registers
=== - Write —
= o= - Read
| write ~ - - register data 2 | B #—
— |4
data \ - Write -':
T™ - data "
il e - _.=._Memnry
Tate
register

Crez9

By = =

[ALU |
i —
| control |

ALUOuUt

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

Step 3: Summary

R-type instruction execution

= Arithmetic-logical instruction (R-type)—operations and the control signals
* ALUOut <= A op B
« ALU performing the operation specified by the funct field
First ALU input is register A
Second ALU input is register B
ALU operation determined by the funct field

CS-173, © EPFL, Spring 2025

49

Step 3

Branch Completion

= Recall: ALU operates on the operands prepared in the previous cycle,
performing a function depending on the instruction class

= Branch if equal
« if (A == B) PC <= ALUOut
« ALU subtracts registers A and B;
« Zero output is asserted if A equals B;

 |f Zero output is asserted, and the instruction is beq, PC is updated with
the value coming from the ALUOut register

CS-173, © EPFL, Spring 2025

50

Step 3 -

Branch Completion

MemRead | Control |0 o
MemWrite | | ALUSTcA
MemtoReg I'-, Op [RegWrite
[6-0] /
IRWrite '\,
.. Lo N
Set ALUSrcA to 1 and —— T-—*
ALUSrcB so that both o 111
ALU operands are from . pC {#-(0 _-r- Read
: . M|_=—= ;
the register file — = = = £ |] U || Address register 1
1 M:mFry‘ — | Instruction | | | | Read data 1
T~ register " | register 2
Set ALUOp so that MemDatarres =N | | | Registers ALUOUt 4
\ Write Read
ALU subtracts Wit N rogister e
B N
‘\ data Write
2 S data
~ ~ I TS
~ ~ —
~ / ",
=~ ~ o L +| Memory { AL \"'.
=~ data . [Imm _..: e
e~ - register | Gen .Illcuntrulf,'
-] _ S _../;
-7 T === - = - |
CS-173, © EPFL, Spring 2025

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

' -«\\1
Step 3 . PCWriteCond I,-""r Y PCSource
I - PCWrite | \
. N Qutputs | ALUOp
Branch Completion el] DU
7 | ALUSrcB
f MemRead Control |
/ MemWrite Ill |I ALDSeA - - | -
. \ Op | Regwrit ==
Assert PCWriteCond to -7 MemtoReg | 0 [ReaWrte _ - p
o - T f - -
update the PC if - == — A\ R ' Dr:l
the Zero output of 4. 1 X
the ALU is asserted _ -l
ki l:;qi'l =—””‘— Read 0
Set PCSourceto1so | M L e "|register 1 ooyl 7 | M
. . 4 A
the value written into) | weme Instruction | Read datat [TATT, B
PC comes from v register | register 2
. MemData = - - . Registers ALUOUt -
ALUOut, which holds ‘I::;it:ter Read| (115
i —- |
the branch target | ety I) PR
. rite
address computed in 0 |data -\2
the previous cycle u .
1 / \
- M |_ ."I: \"".
ata” [| imm [Aw |
register Gen .,.I_cﬂntrol._l,'
CS-173, © EPFL, Spring 2025

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

Step 3: Summary

Branch Completion

= Branch if equal—operations and the control signals involved

« ALU is used to compare two registers;
if they are equal, the branch is taken; otherwise, the branch is not taken

First ALU input is register A
Second ALU input is register B
ALU instructed to perform subtraction
« Zero output asserted if A equals B
o |f Zero output is asserted
Update the PC
The input of the PC is the output of the ALUOut register

CS-173, © EPFL, Spring 2025

54

Step 4

Memory Access or R-type Instruction Completion

= A load or store instruction accesses memory, or an arithmetic-
logical instruction writes its result to the register file

« Memory load
* Memory store
* R-type

CS-173, © EPFL, Spring 2025

55

Step 4

Memory Access

= Recall: A load or store instruction accesses memory, or an arithmetic-logical
instruction writes its result to the register file

= Memory load
« Memory Data Register = Memory[ALUOut]
« Memory address comes from the ALUOut; memory read

= Memory store
* Memory[ALUOut] <= B
« Memory address comes from the ALUOut; memory write

CS-173, © EPFL, Spring 2025

56

Step 4

Memory Access

The address was computed
during the previous cycle and
stored in ALUOut

7/

-~
-

For memory load, - -~
assert MemRead

For memory store, -7
assert MemMWrite

Set lorD to 1 to force !

the address to come

from the ALUout rather than
from the PC

MDR is overwritten in every
clock cycle (no harm in that)

CS-173, © EPFL, Spring 2025

/

{

A

; \‘
l'r h

PCWriteCond PCSource
-~ _.—|_| . PCWrite i '
AN . | Outputs | ALUOP
lorD | '| :
ALUSrcE
MemRead Control
1 g
— - MemWrite | | ALUSrcA
r > MemtoReg [BG—T]] RegWrite
s - - RWrite 'x
S
/
4 "'T
pC 24 1 | Read ?‘.‘I
g Address register 1 Read N L ;
. data 1 X
1 Instruction | Read J
/ Memory register || | register 2 !
/7 MemData o . _ Registers ALUOut
WHFE Read
| Write register "' b~ B fg—{ 0
data Write 41
0 data -2
M
u
X i
— P “\
Memory |_ ALU I"'.
data . Imm | ALU ||
register Gen I"-. control /

%, A
L e

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

Step 4. Summary

Memory Access

= Memory load—operations and control signals involved
« Memory Data Register = Memory[ALUOut]
Memory address comes from the ALUOut register rather than the PC
Reading from the memory

= Memory store—operations and control signals involved
 Memory[ALUOut] <= B
Memory address comes from the ALUOut register rather than the PC
Writing to the memory

CS-173, © EPFL, Spring 2025

58

Step 4

R-type Instruction Completion

= Recall: A load or store instruction accesses memory, or an arithmetic-logical
instruction writes its result to the register file

= R-type
 Reg[Instruction Register[11:7]] <= ALUOut
« Copy ALUOut to the register file

CS-173, © EPFL, Spring 2025

59

Step 4 -

R-type Instruction Completion

MemRead Control | —
MemWrite II! .I A
MemtoReg | Op | Regwrite
| [6-0] /
IRWrite \ ;
Y i
e |
™ M
Assert RegWrite to SR -~ l
. . . Read 0
write to the register file e ~ regter 1 | — /,ﬂ
-~ A
. data 1 L X
Instruction _| Read L
Set MemtoReg to zero, T:ETEta-* register | | "| register 2 U
Regist: -
so thatthe outputof ~ _ _ _ _ 1 lwite oo | — ALUOu
the ALUOULt is written 7T~ | Yite IS data2[~|B 1"
into the register file, as = AN 6\ I+ Write -2
M
opposed to the MDR \ u
\ 3 TN
— ._z/’ \
Sl Memory |_ AL \"'.
~ \data & . |ITIr11 _i--I L il
reﬁﬁat‘er - N | Gen '.Ill_cuntrul::.'

CS-173, © EPFL, Spring 2025

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

Step 4. Summary

R-type Instruction Completion

= R-type—operations and control signals involved
 Reg[Instruction Register[11:7]] <= ALUOut
« Use Instruction Register [11:7] as the index of the register (in the register file) to write to
Write to the register file

The value from the ALUOut register and not the value from
the Memory Data Register is to be written to the register file

CS-173, © EPFL, Spring 2025

61

CS-173, © EPFL, Spring 2025

62

Step 5

Memory Read Completion Step

= Memory Load (read) completes by writing the value from the memory data
register to the register file
* Reg[Instruction Register[11l:7]] <= Memory Data Register

 Write the data, which was placed in the Memory Data Register in the previous cycle,
into the register file

Step 5

Memory Read Completion Step

Write the load data,
which was stored in MDR
in the previous cycle,

into the register file

Set to 1,

to write the data loaded
from memory instead
of from the ALUOut
Assert to
cause a write to
the register file

CS-173, © EPFL, Spring 2025

MemRead | Control
. | | ALUSrcA
MemWrite |
MemtoReg | Op | RegWrite
60
l‘\.__ 4
4

—

Address

Memory
MemData

| Write
data

7/

<
~

Ny

/\/

\
-7 N
=

/

~

-

o

-
P
Y e

|-

7’
7

Instruction

/register ||

Memory

“we= <

data

-

Crez9

register

- =>
Read
register 1 Read
| Read data 1
" | register 2
- Registers
Write Read
register data 2
Write
data
Imm
Gen

1u
5 X
o "'_..
[ALy
— [a—

i control |

ALUOuUt

A E
" &

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

Step 5: Summary

Memory Read Completion Step

= Operations and control signals involved:
Write to the register file

The data to write is the value from the Memory Data Register
and not the value from the ALUOut register

CS-173, © EPFL, Spring 2025

66

Done Breaking the Instruction Execution...

...into Clock (CPU) Cycles

Five steps

= |[nstruction fetch

= |nstruction decode and register (operand) fetch

= Execution, memory address computation, or branch completion
= Memory access or R-type instruction completion

= Memory read completion

What is next?

CS-173, © EPFL, Spring 2025

67/

Defining the Control:

Finite State Machine
Multicycle CPU

CS-173, © EPFL, Spring 2025

© EnelEva / Adobe Stock

68

Recall: Breaking the Instruction Execution...

...into Clock Cycles

= Now that we have determined what the control signals are and
when they must be asserted, we can implement the control unit

= The control for the multicycle CPU must specify both the signals
to be set in any step (cycle) and the next step in the sequence

CS-173, © EPFL, Spring 2025

69

Control FSM

High-level view

Labels on the arcs are
conditions tested to
determine which state
is the next state.

When the next state is
unconditional, no label
IS given.

Labels inside nodes
indicate the output
signals asserted during
that state.

CS-173, © EPFL, Spring 2025

Instruction fetch (link) Instruction decode and

Memory reference
FSM (link)

R-type
FSM (link)

register (operand) fetch (link)

Branch if equal
FSM (link)

70

Control FSM

Outline

» [nstruction fetch
 |dentical for all instructions

= [nstruction decode and operand fetch
= Memory reference FSM

= R-type FSM

= Branch if equal FSM

CS-173, © EPFL, Spring 2025

© EnelEva / Adobe Stock

71

Control FSM

Instruction Fetch Instruction fetch (link) Instruction decode and

register (operand) fetch (link)

lorD
MemRead
IRWrite
ALUSrcA
ALUSrcB
ALUOp
PCSource

Start

4

Memory reference R-type Branch if equal
FSM (link) FSM (link) FSM (link)

CS-173, © EPFL, Spring 2025 I | |

Control FSM

Outline

= Instruction fetch

= Instruction decode and operand fetch
* |dentical for all instructions

= Memory reference FSM
= R-type FSM
= Branch if equal FSM

CS-173, © EPFL, Spring 2025

© EnelEva / Adobe Stock

73

Control FSM

Instruction decode and operand fetch

= Recall: Performing optimistic

Instruction fetch (link) Instruction decode and

register (operand) fetch (link)

lorD
MemRead

actions, while waiting for tart
the instruction to be decoded

IRWrite
R ALUSFCA ALUSrcA
ALUSTcB ALUSrcB
PCSource

= (1) Read from the register file and
(2) Compute the branch target
address
« Set ALUSrcA to zero (PC sent to ALU)

« Set ALUSrcB so that the offset is sent
to the ALU

« Set ALUOp so that the ALU adds

FSM (link)

CS-173, © EPFL, Spring 2025 |

Memory reference
FSM (link)

R-type Branch if equal

FSM (link)

| | 74

Control FSM

Outline

= [nstruction fetch

= Instruction decode and register fetch
= Memory reference FSM

= R-type FSM

= Branch if equal FSM

CS-173, © EPFL, Spring 2025

© EnelEva / Adobe Stock

75

Control FSM

Instruction fetch (link :
Memory Reference (linkk) nstruction decode and

register (operand) fetch (link)

lorD

MemRead
IRWrite
ALUSrcA
Start - ALUSrcA
ALUSIcB ALUSrcB

PCSource

Memory reference R-type Branch if equal
FSM (link) FSM (link) FSM (link)

CS-173, © EPFL, Spring 2025 | I |

State 1

Memory Reference FSM

Address computation (Op = LW or (Op = 'SW)

Memory address
computation (link)

= Recall: ALU adding the operands
to form the memory address

¢ Set to 1, so that register A
is the first ALU input
o Set so that the output of

the offset generation unit is 3
the second ALU input

o Set so that the ALU adds

(Op = 'LW')

State 0
77

CS-173, © EPFL, Spring 2025

State 1

Memory Reference FSM

Load or Store

= Recall: Memory address was
computed in the previous cycle

and saved in ALUOut
« For memory load, assert
 Set to 1 to force the address to Memory load
come from the ALUout rather than (link) 3
from the PC

CS-173, © EPFL, Spring 2025

(Op = 'LW') or (Op = 'SW')

Memory address
computation (link)

(Op = 'LW')

State 0

/8

Memory Reference FSM

Load or Store

= Recall: Memory address was
computed in the previous cycle
and stored in ALUOut
* For memory store, assert MemWrite

« SetlorD to 1 to force the address to
come from the ALUout rather than
from the PC

CS-173, © EPFL, Spring 2025

State 1

(Op = 'LW') or (Op = 'SW')

Memory address

ALUSrcA \ computation (link)
ALUSrcB

ALUOp

Memory store

Memory load .
(link)

(link) s

lorD
MemRead

lorD
MemMWrite

State 0
79

Memory Reference FSM

Memory load completion

» Recall: Write the load data,
which was stored in MDR in
the previous cycle, into
the register file

« Set to 1, to write the data
loaded from memory instead of
from the ALUOut

« Assert
the register file

to cause a write to

CS-173, © EPFL, Spring 2025

State 1

(Op = 'LW') or (Op = 'SW')

Memory address
computation (link)

(Op = 'LW')

Memory store

Memory load
(link)

(link) s

Memory read

completion
(link)

State 0
80

Control FSM

Outline

= [nstruction fetch
= Instruction decode and register fetch

= Memory reference FSM
* R-type FSM
= Branch if equal FSM

CS-173, © EPFL, Spring 2025

© EnelEva / Adobe Stock

81

Control FSM

R-type Instruction fetch (link) |nstruction decode and

register (operand) fetch (link)

lorD

MemRead
IRWrite
ALUSrcA
Start - ALUSrcA
ALUSTCB ALUSrcB

PCSource

Memory reference R-type Branch if equal
FSM (link) FSM (link) FSM (link)

CS-173, © EPFL, Spring 2025 | I |

R-type FSM

= Recall: ALU is performing
the operation on two values
read from the register file in
the previous cycle

¢ Set to 1 and
so that both ALU operands are
from the register file

« Set so that the funct field
from the instruction register is used
to determine the ALU operation
(add, sub, and, or)

CS-173, © EPFL, Spring 2025

State 1

(Op = R-type)

Execution

(link)

State 0

83

State 1

R-type FSM

Final
(Op = R-type)

Execution

= Recall: An arithmetic-logical 6 (link)

instruction writes its result
to the register file

« Assert RegWrite to write to the
register file

« Set MemtoReg to zero, so that
the output of the ALUOuUt is written
into the register file, as opposed to
the MDR

ALUSrcA
ALUSrcB
ALUOp

R-type completion
(link)

RegWrite
MemtoReg

CS-173, © EPFL, Spring 2025 State 0

Control FSM

Outline

= [nstruction fetch

= Instruction decode and register fetch
= Memory reference FSM

= R-type FSM

= Branch if equal FSM

CS-173, © EPFL, Spring 2025

© EnelEva / Adobe Stock

85

Control FSM

Branch if Equal Instruction fetch (link) |pstryction decode and

register (operand) fetch (link)

lorD

MemRead
IRWrite
ALUSrcA
Start - ALUSrcA
ALUSIcB ALUSrcB

PCSource

Memory reference R-type Branch if equal
FSM (link) FSM (link) FSM (link)

CS-173, © EPFL, Spring 2025 | I |

Branch FSM

Final

= Recall: ALU operates on the operands
prepared in the previous cycle,
performing a function depending on
the instruction class

o Set to T and so that both
ALU operands are from the register file

o Set so that ALU subtracts

« Assert to conditionally update
the PC if the Zero output of the ALU
is asserted

« Set to T so the value written into

PC comes from ALUOut, which holds
the branch target address computed in
the previous cycle

CS-173, © EPFL, Spring 2025

(Op = "BEQ")

Branch completion
(link)

N\

87

CS-173, © EPFL, Spring 2025

38

Complete

Finite State Machine
Multicycle CPU

CS-173, © EPFL, Spring 2025

© EnelEva / Adobe Stock

89

Recall:

A Simple Multicycle CPU

CS-173, © EPFL, Spring 2025

PCWriteCond

e K\\

\'.
".
L1

PCSource

—‘f\\- _:I.1I DI:-I‘I'ﬁI.I'r te ill| Dulputb I'll ALUOD
lorD | II
ALUSrcE
MemRead Control |
MemWrite I|I .I ALUSIcA
MemtoReg Op | RegWrite
III [B_ﬂ] II-
IRWrite \,
N4
0
Fe M J, | Read
2 Address register 1 read | T
L M Instruction | Read data 1 _L
emory " |- . :
register register 2
Membata & _ Registers
Write Read | [
| Write register data 2 .
— |4
dete) Write T
data -
M
u
X
—=, 1
Memory |_
data Imm
. »
register Gen

Crez9

By = =

U
| control |

S

ALUOuUt

| —

0

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

Finite State Machine

Complete

CS-173, © EPFL, Spring 2025

ALUSrcA=1
ALUSrcB =10

MemRead
lorD =1

RegDst=0
RegWrite
MemtoReg = 1

Start ——

MemRead
ALUSrcA =0
lorD=0
IRWrite
ALUSrcB =01
ALUOp =00
PCWrite
PCSource =0

ALUSrcA =1

ALUSrcA =1

ALUSrcB = 00 ALUSIcB = 00
ALUOp =10 ALUOp = 01
PCWriteCond

PCSource =1

ALUScA =0
ALUSrcB = 10
ALUOp = 00

&
emory
1CCH R-ty, npletior
2
MemWrite RegDst = 1
lorD = 1 RegWrite
MemtoReg = 0

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2" Ed.

97

How Many is Multi?

» Q: How many cycles do R-type, memory load, memory store, and
branch if equal instructions take in our simple multicycle CPU?

= A:

R-type: 4 cycles
Memory load: 5 cycles
Memory store: 4 cycles
Branch: 3 cycles

CS-173, © EPFL, Spring 2025

CPl in a Multicycle CPU

= Given the multicycle CPU implementation and the following mix
of instructions in a program, find the corresponding CPI:
« 20% memory loads
« 8% memory stores
* 10% branches
« 62% ALU (the rest of the mix)

CS-173, © EPFL, Spring 2025

93

CPl in a Multicycle CPU

Solution

Instructions y Average clock cycles

CPU cycles = :)
for a program per instruction

= CPU cycles = 3., Instruction count; x CPI,
= CPI = CPU cycles / Instruction count
= Therefore, CPl = 0.20x5 + 0.08x4 + 0.10x3 + 0.62x4 = 4.10

= This CPI is better (lower) than if all the instructions were to take
the same number of clock cycles (here, five)

CS-173, © EPFL, Spring 2025

94

Literature

CONPUTER ORGANIZATION The RISC-V Instruction Set

AND DESIGN Risc-v Epmon
_ THEHARDWARESOTWAREINTERFCE M a n u a | \/Ol u m e |

Unprivileged Architecture

Version 20240411

Visit online: Link

= Chapter 4: The Processor
= 45

CS-173, © EPFL, Spring 2025

https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view
https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view

The End

CS-173 Fundamentals of Digital Systems

Mirjana Stojilovic
Spring 2025

FUNDAMENTALH

D IGITAL

SYSTEMS

¢

https://mirjanastojilovic.github.io/cs173/index.html

