
Computer Architecture
Multicycle CPU FSM

CS-173 Fundamentals of Digital Systems

Mirjana Stojilović

Spring 2025

https://mirjanastojilovic.github.io/cs173/index.html

Previously on FDS
• Processor Implementations

• Single-cycle vs. multicycle CPU

• Multicycle CPU

2CS-173, © EPFL, Spring 2025

© EnelEva / Adobe Stock

3

Recall: Single-Cycle vs. Multicycle CPU

▪ If all instruction steps are performed in a single clock cycle,
we have a single-cycle CPU implementation

CS-173, © EPFL, Spring 2025

The longest combinational
path (the critical path)

determines the maximum
operating frequencyR

e
g

is
te

r

R
e

g
is

te
r

CLK

Note: These two registers could
be the same one (e.g., PC)

Critical path is
now reduced

Critical path is
now reduced

▪ Alternative implementation is a multicycle CPU
• In a multi-cycle implementation, one or more instruction steps take one

clock cycle, and consequently, some instructions take multiple clock cycles

4

Recall: Single-Cycle vs. Multicycle CPU

CS-173, © EPFL, Spring 2025

R
e

g
is

te
r

CLK

R
e

g
is

te
r

R
e

g
is

te
r

Note: These two registers could
be the same one (e.g., PC)

Note: This is an example;
Other multi-cycle
implementations
are also possible

5

Recall: Is Single-Cycle CPU More Efficient?

▪ No. Every instruction takes one cycle. fmax is limited by the longest of all
paths that instructions take (the critical path).

▪ In a multi-cycle CPU, one or more instruction steps take one cycle.
fmax increases as the critical path is shorter now.
Instructions that require fewer steps will likely be executed faster,
reducing the program's overall execution time.

CS-173, © EPFL, Spring 2025

6

Recall: Multicycle CPU
vs. Single-Cycle CPU

▪ A single memory unit for both instructions and data
• Why? Having more than one cycle available (more time to read

instructions, read/write data) allows memory sharing

▪ A single ALU instead of an ALU and two adders
• Why? The same ALU can be used in different clock cycles

▪ Additional registers to hold the outputs of the functional units
until the value is used (consumed) in a subsequent clock cycle
• Why? Ensure that the value to be used is “stable” for the entire cycle

CS-173, © EPFL, Spring 2025

7

Recall: A Simple Multicycle CPU

▪ Recall: Let us build a simple CPU supporting the following subset
of RISC-V instructions for simplicity

• R-type arithmetic-logical instructions

• add, sub, and, or

• Memory instructions

• load and store word

• Control flow

• branch if equal

CS-173, © EPFL, Spring 2025

8

Recall:
A Simple Multicycle CPU

CS-173, © EPFL, Spring 2025
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

9

Recall: Additional Registers
Multicycle CPU Datapath, High-level View

CS-173, © EPFL, Spring 2025

A register for ALU output

One register per output
of the register file, to hold
the operands for the ALU

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

Instruction register (IR) – for the 32-bit
instruction word read from memory

Memory data register (MDR)– for the 32-bit
data word read from memory

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

10

Recall: Additional Multiplexers
Sharing Functional Units

CS-173, © EPFL, Spring 2025

A MUX to select between PC and ALU output for the next memory address

A MUX to select between the PC
and a register from the register file

A 3-input MUX to allow
the ALU to increment

the PC by 4 or compute
branch target address

11

Recall: A Multicycle CPU
With Some Control Lines Shown

CS-173, © EPFL, Spring 2025

Determines if
the address to
the memory is
supplied from ALUOut
register or the PC

12

Recall: A Multicycle CPU
With Some Control Lines Shown

CS-173, © EPFL, Spring 2025

If asserted, memory
contents designated
by the address input
are put on the output

If asserted, memory
contents designated
by the address input
are replaced by
the value on the
Write data input

13

Recall: A Multicycle CPU
With Some Control Lines Shown

CS-173, © EPFL, Spring 2025

The output of
the memory is written
into the instruction
register (IR)

If asserted, the register
on the Write reg. input
is written with the value
on the Write data input

Determines if the value fed to
the register file Write data input
comes from the ALUOut
register or from the memory
data register (MDR)

14

Recall: A Multicycle CPU
With Some Control Lines Shown

CS-173, © EPFL, Spring 2025

Determines whether
the first ALU operand
is register A
or the PC

Determines whether
the second ALU
operand is register B,
constant 4, or the sign-
extended immediate

15

Recall: A Multicycle CPU
With Some Control Lines Shown

CS-173, © EPFL, Spring 2025

Determines if ALU
performs addition
(PC = PC+4, or branch
target address),
subtraction
(comparing two
registers for a branch
if equal instruction),
or another operation

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

16

Recall:
Multicycle CPU Control

CS-173, © EPFL, Spring 2025

The opcode field of
the instruction (register IR)
determines the operation
of the ALU via ALUOp
(if not an R-type instruction,
but memory access or branch)

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

17

Recall:
Multicycle CPU Control

CS-173, © EPFL, Spring 2025

Selects the next PC value:
PC + 4 or branch target address

Unconditional PC write:
PCwrite causes an
unconditional write of
the PC, during normal
increment (PC = PC + 4)

Conditional PC write:
PCWriteCond causes
a write of the PC if
the branch condition
is also true (if the Zero
output from the ALU
is also active).

Signal name Effect

RegWrite If asserted, the register on the Write reg. input is written with the value on the Write
data input

ALUSrcA Determines whether the first ALU operand is register A or the PC

MemRead If asserted, memory contents designated by the address input are put on the output

MemWrite If asserted, memory contents designated by the address input are replaced by
the value on the Write data input

MemtoReg Determines if the value fed to the register file Write data input comes from
the ALUOut register or from the memory data register (MDR)

IorD Determines if the address to the memory is supplied from ALUOut register or the PC

IRWrite The output of the memory is written into the instruction register (IR)

PCWrite The PC is written; the source is controlled by PCSource

PCWriteCond The PC is written if the Zero output from the ALU is also active

18

Recall: Actions of the 1-bit Control Signals
Summary

CS-173, © EPFL, Spring 2025

Signal name Value Effect

ALUOp 00 addition

01 subtraction

10 The funct field of the instruction determines the operation of the ALU
(distinction between add, sub, and, and or; they all share the same opcode)

ALUSrcB 00 The second input to the ALU comes from the register B

01 The second input to the ALU is the constant 4

10 The second input to the ALU is the immediate generated from the instruction
register (IR)

PCSource 00 Output of the ALU (PC+4) is sent to the PC for writing

01 The contents of the ALUOut register (the branch target address)
are sent to the PC for writing

10 Additional functionality (not covered in this example, ignore)

19

Recall: Actions of the 2-bit Control Signals
Summary

CS-173, © EPFL, Spring 2025

CS-173, © EPFL, Spring 2025 20

Let's Talk About

21CS-173, © EPFL, Spring 2025

© EnelEva / Adobe Stock

• Breaking the instruction execution into cycles

• Multicycle CPU FSM

22

Learning Outcomes

▪ List the instruction steps and explain them

▪ Draw and explain the multicycle CPU FSM

▪ Quantify and compare CPU performance

CS-173, © EPFL, Spring 2025

© EnelEva / Adobe Stock

23

Quick Outline

▪ Instruction execution steps
• Instruction fetch

• Instruction decode and operand fetch

• Execution, memory address computation,
or branch completion

• Memory access or R-type instruction completion

• Memory read completion step

▪ Multicycle CPU FSM

▪ Complete FSM

▪ Example: Compute CPI in our multicycle CPU

CS-173, © EPFL, Spring 2025

24

Instruction Execution Across Cycles

▪ To determine which control signals are needed and their setting,
we need to look at what should happen in each CPU cycle

▪ When deciding how to break instruction execution into cycles,
the goal is performance

▪ We break execution into a series of steps, each taking one cycle,
attempting to keep the amount of work per cycle roughly equal

CS-173, © EPFL, Spring 2025

25

Instruction Execution Across Cycles
Contd.

▪ Let us restrict each step to contain at most

• one memory access

• one register file access

• an ALU operation

▪ The CPU cycle could be as short as the longest of the above

▪ At the end of every CPU cycle, any data needed on a subsequent
cycle must be stored in a register

▪ Edge-triggered design: We can continue to read the current value
of a register; the new value does not appear until the next cycle

CS-173, © EPFL, Spring 2025

26

Instruction Execution Across Cycles
Contd.

▪ Values required by subsequent cycles must be kept constant for
the duration of at least the subsequent cycle:
• Major state elements

• Program counter: PC

• Register file, memory

• Temporary registers that are written on every clock cycle
• At the output of the register file: A and B

• At the memory output, memory data register: MDR

• At the output of the ALU: ALUOut

• Temporary register with write control

• Instruction register: IR

CS-173, © EPFL, Spring 2025

27

In a Single-Cycle CPU Datapath…

▪ Each instruction uses a set of datapath elements to carry out
its execution

▪ Many of the datapath elements operate in series,
using the output of another element as an input

▪ Some datapath elements operate in parallel:
• E.g., PC is incremented and the instruction is read at the same time

CS-173, © EPFL, Spring 2025

28

In a Multicycle CPU Datapath…

▪ All operations in one instruction step occur in parallel
within one clock cycle

▪ Successive instruction steps operate in series
in different clock cycles

▪ The limitation of one ALU operation, one memory access,
and one register file access determines what can "fit" in
one instruction step (one cycle)

CS-173, © EPFL, Spring 2025

CS-173, © EPFL, Spring 2025 29

30

Breaking the Instruction Execution…
…into Clock (CPU) Cycles

Five steps

▪ Instruction fetch

▪ Instruction decode and register (operand) fetch

▪ Execution, memory address computation, or branch completion

▪ Memory access or R-type instruction completion

▪ Memory read completion

CS-173, © EPFL, Spring 2025

31

Step 1
Instruction Fetch

▪ Fetch the instruction from memory and compute the address of the next
instruction in the program sequence
• IR <= Memory [PC]

• PC <= PC + 4

▪ Operation
• Send the PC to the memory as the address, perform a memory read,

and write the fetched instruction to the Instruction Register (IR)

• Increment the PC by four to prepare for the subsequent instruction

• Save the incremented instruction address in the PC

CS-173, © EPFL, Spring 2025

Note: deliberate use of nonblocking Verilog
operator symbol <=; it indicates that right-

hand sides are evaluated and then all
assignments are made, which is effectively

how the hardware executes during the cycle

32CS-173, © EPFL, Spring 2025
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

Step 1
Instruction Fetch

Assert MemRead

Set IorD to zero,
to select the PC as
the source of the
memory address

Assert IRWrite

Set ALUSrcA,
ALUSrcB, and
ALUOp so that
the ALU computes
PC = PC + 4

33CS-173, © EPFL, Spring 2025
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

Step 1
Instruction Fetch

Update PC:
- set PCWrite
- set PCSource to zero

PC increment and instruction
memory access occur in
parallel. The new PC value is
not visible until the next
cycle. Incremented PC will
also be saved in ALUOut, but
this action is harmless.

34

Step 1: Summary
Instruction Fetch

▪ Operations and control signals involved
• IorD: Select PC as the source address

• MemRead: Perform a memory read

• IRWrite: Write the instruction from the memory into the Instruction Register

• Increment the PC by four

• ALUSrcA: Send the PC to the first input of the ALU

• ALUSrcB: Send 4 to the second input of the ALU

• ALUOp: Instruct ALU to perform addition

• Save the incremented instruction address in the PC

• PCSource: Send ALU output to the PC

• PCWrite: Write to the PC

CS-173, © EPFL, Spring 2025

CS-173, © EPFL, Spring 2025 35

36

Step 2
Instruction Decode and Register (Operand) Fetch

▪ In the previous and this step, we do not yet know what the instruction is

▪ We can only perform actions that are either
• Applicable to all instructions (e.g., fetching the instruction in step 1) or

• Not harmful, in case the instruction isn't what we think it might be

▪ What can we do?

▪ (1) Can read rs1 and rs2 registers

• It's not harmful to read them, even if not necessary

• Those values may be needed later, so we keep them in temporary registers A and B

CS-173, © EPFL, Spring 2025

37

Step 2
Instruction Decode and Register (Operand) Fetch

▪ In the previous and this step, we do not yet know what the instruction is

▪ We can only perform actions that are either
• Applicable to all instructions (e.g., fetching the instruction in step 1) or

• Not harmful, in case the instruction isn't what we think it might be

▪ What else can we do?

▪ (2) Can compute branch target address with the ALU
• It's not harmful because we can ignore this value if the instruction turned out

not to be a branch

• The value may be needed later, so we keep it in register ALUOut

CS-173, © EPFL, Spring 2025

38

Step 2
Instruction Decode and Register (Operand) Fetch

▪ Q: Why do these optimistic actions?

▪ A: Performing "optimistic" actions early helps decrease
the number of cycles needed to execute an instruction

▪ Q: What makes doing these optimistic actions possible?

▪ A: The regularity of the instruction formats
• For example, if the instruction has two register operands,

they are always in the rs1 and rs2 fields

CS-173, © EPFL, Spring 2025

39

Step 2
Instruction Decode and Register (Operand) Fetch

▪ Recall: Step 2 performs a few “optimistic” actions, as they do not hurt, but
may prove helpful later when it is known what the instruction is
• A <= RF[Instruction Register[19:15]]

• B <= RF[Instruction Register[24:20]]

• ALUOut <= PC + offset

▪ Operations
• Access register file (RF) and read registers rs1 and rs2

• Write to registers A and B; they are overwritten every clock cycle

• Compute the branch target address and place it in the ALUOut register,
from where it will be read in the next clock cycle if the instruction is a branch

CS-173, © EPFL, Spring 2025

40CS-173, © EPFL, Spring 2025
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

Step 2
Instruction Decode and Register (Operand) Fetch

Set ALUSrcA to zero
(PC sent to ALU)

Set ALUOp so that
the ALU adds

Set ALUSrcB so that
the offset is sent to
the ALU

Register file access and
computation of branch
target occur in parallel

41

Step 2: Summary
Instruction Decode and Register (Operand) Fetch

▪ Operations and control signals involved
• Access the register file and read registers rs1 and rs2

• Write to the registers A and B; they are overwritten every clock cycle

• Compute the branch target address and place it in the ALUOut register,
from where it will be read on the next clock cycle if the instruction is a branch

• ALUSrcA: PC sent to the ALU

• ALUSrcB: PC offset (for computing branch target address) sent to the ALU

• ALUOp: ALU instructed to perform addition

• The register file access and branch target address computation occur in parallel

CS-173, © EPFL, Spring 2025

CS-173, © EPFL, Spring 2025 42

43

Step 3
Execution, Memory Address Computation, or Branch Completion

▪ ALU operates on the operands prepared in the previous cycle,
performing a function depending on the instruction class

• Memory address computation (load, store) or

• Arithmetic-logical instruction (R-type) or

• Branch if equal

CS-173, © EPFL, Spring 2025

44

Step 3
Memory Address Computation

▪ Recall: ALU operates on the operands prepared in the previous cycle,
performing a function depending on the instruction class

▪ Memory address computation
• ALU adding the operands to form the memory address

CS-173, © EPFL, Spring 2025

45CS-173, © EPFL, Spring 2025
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

ALU is adding
the operands to form
the memory address

Set ALUSrcA to 1,
so that register A is
the first ALU input

Set ALUSrcB so that
the output of
the offset generation
unit is the second
ALU input

Set ALUOp so that
the ALU adds

Step 3
Memory Address Computation

46

Step 3: Summary
Memory Address Computation

Memory address computation—operations and the control signals involved
• ALU adding the operands to form the memory address

• ALUSrcA: First ALU input is register A

• ALUSrcB: Second ALU input is the offset

• ALUOp: ALU instructed to perform addition

CS-173, © EPFL, Spring 2025

47

Step 3
R-type instruction execution

▪ Recall: ALU operates on the operands prepared in the previous cycle,
performing a function depending on the instruction class

▪ Arithmetic-logical instruction (R-type)
• ALUOut <= A op B

• ALU performing the operation specified by the opcode

▪ Recall: Distinction between add, sub, and, and or cannot be made based
on the opcode (it is the same!); the funct field serves the purpose

CS-173, © EPFL, Spring 2025

48CS-173, © EPFL, Spring 2025
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

ALU is performing
the operation on two
values read from
the register file in
the previous cycle

Set ALUSrcA to 1 and
ALUSrcB so that both
ALU operands are from
the register file

Set ALUOp so that
funct field from the IR
is used to determine
the ALU operation
(add, sub, and, or)

Step 3
R-type instruction execution

49

Step 3: Summary
R-type instruction execution

▪ Arithmetic-logical instruction (R-type)—operations and the control signals
• ALUOut <= A op B

• ALU performing the operation specified by the funct field

• ALUSrcA: First ALU input is register A

• ALUSrcB: Second ALU input is register B

• ALUOp: ALU operation determined by the funct field

CS-173, © EPFL, Spring 2025

50

Step 3
Branch Completion

▪ Recall: ALU operates on the operands prepared in the previous cycle,
performing a function depending on the instruction class

▪ Branch if equal
• if (A == B) PC <= ALUOut

• ALU subtracts registers A and B;

• Zero output is asserted if A equals B;

• If Zero output is asserted, and the instruction is beq, PC is updated with
the value coming from the ALUOut register

CS-173, © EPFL, Spring 2025

51CS-173, © EPFL, Spring 2025
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

Set ALUSrcA to 1 and
ALUSrcB so that both
ALU operands are from
the register file

Set ALUOp so that
ALU subtracts

Step 3
Branch Completion

52CS-173, © EPFL, Spring 2025
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

Assert PCWriteCond to
update the PC if
the Zero output of
the ALU is asserted

Set PCSource to 1 so
the value written into
PC comes from
ALUOut, which holds
the branch target
address computed in
the previous cycle

Step 3
Branch Completion

53

Step 3: Summary
Branch Completion

▪ Branch if equal—operations and the control signals involved
• ALU is used to compare two registers;

if they are equal, the branch is taken; otherwise, the branch is not taken

• ALUSrcA: First ALU input is register A

• ALUSrcB: Second ALU input is register B

• ALUOp: ALU instructed to perform subtraction

• Zero output asserted if A equals B

• If Zero output is asserted

• PCWriteCond: Update the PC

• PCSource: The input of the PC is the output of the ALUOut register

CS-173, © EPFL, Spring 2025

CS-173, © EPFL, Spring 2025 54

55

Step 4
Memory Access or R-type Instruction Completion

▪ A load or store instruction accesses memory, or an arithmetic-
logical instruction writes its result to the register file

• Memory load

• Memory store

• R-type

CS-173, © EPFL, Spring 2025

56

Step 4
Memory Access

▪ Recall: A load or store instruction accesses memory, or an arithmetic-logical
instruction writes its result to the register file

▪ Memory load
• Memory Data Register = Memory[ALUOut]

• Memory address comes from the ALUOut; memory read

▪ Memory store
• Memory[ALUOut] <= B

• Memory address comes from the ALUOut; memory write

CS-173, © EPFL, Spring 2025

57CS-173, © EPFL, Spring 2025
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

Step 4
Memory Access

The address was computed
during the previous cycle and
stored in ALUOut

For memory load,
assert MemRead

For memory store,
assert MemWrite

Set IorD to 1 to force
the address to come
from the ALUout rather than
from the PC

MDR is overwritten in every
clock cycle (no harm in that)

58

Step 4: Summary
Memory Access

▪ Memory load—operations and control signals involved
• Memory Data Register = Memory[ALUOut]

• IorD: Memory address comes from the ALUOut register rather than the PC

• MemRead: Reading from the memory

▪ Memory store—operations and control signals involved
• Memory[ALUOut] <= B

• IorD: Memory address comes from the ALUOut register rather than the PC

• MemWrite: Writing to the memory

CS-173, © EPFL, Spring 2025

59

Step 4
R-type Instruction Completion

▪ Recall: A load or store instruction accesses memory, or an arithmetic-logical
instruction writes its result to the register file

▪ R-type
• Reg[Instruction Register[11:7]] <= ALUOut

• Copy ALUOut to the register file

CS-173, © EPFL, Spring 2025

60CS-173, © EPFL, Spring 2025
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

Step 4
R-type Instruction Completion

Assert RegWrite to
write to the register file

Set MemtoReg to zero,
so that the output of
the ALUOut is written
into the register file, as
opposed to the MDR

61

Step 4: Summary
R-type Instruction Completion

▪ R-type—operations and control signals involved
• Reg[Instruction Register[11:7]] <= ALUOut

• Use Instruction Register [11:7] as the index of the register (in the register file) to write to

• RegWrite: Write to the register file

• MemtoReg: The value from the ALUOut register and not the value from
the Memory Data Register is to be written to the register file

CS-173, © EPFL, Spring 2025

CS-173, © EPFL, Spring 2025 62

63

Step 5
Memory Read Completion Step

▪ Memory Load (read) completes by writing the value from the memory data
register to the register file
• Reg[Instruction Register[11:7]] <= Memory Data Register

• Write the data, which was placed in the Memory Data Register in the previous cycle,
into the register file

CS-173, © EPFL, Spring 2025

64CS-173, © EPFL, Spring 2025
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

Step 5
Memory Read Completion Step

Write the load data,
which was stored in MDR
in the previous cycle,
into the register file

Set MemtoReg to 1,
to write the data loaded
from memory instead
of from the ALUOut

Assert RegWrite to
cause a write to
the register file

65

Step 5: Summary
Memory Read Completion Step

▪ Operations and control signals involved:
• RegWrite: Write to the register file

• MemtoReg: The data to write is the value from the Memory Data Register
and not the value from the ALUOut register

CS-173, © EPFL, Spring 2025

CS-173, © EPFL, Spring 2025 66

67

Done Breaking the Instruction Execution…
…into Clock (CPU) Cycles

Five steps

▪ Instruction fetch

▪ Instruction decode and register (operand) fetch

▪ Execution, memory address computation, or branch completion

▪ Memory access or R-type instruction completion

▪ Memory read completion

What is next?

CS-173, © EPFL, Spring 2025

Defining the Control:
Finite State Machine
Multicycle CPU

68CS-173, © EPFL, Spring 2025

© EnelEva / Adobe Stock

69

Recall: Breaking the Instruction Execution…
…into Clock Cycles

▪ Now that we have determined what the control signals are and
when they must be asserted, we can implement the control unit

▪ The control for the multicycle CPU must specify both the signals
to be set in any step (cycle) and the next step in the sequence

CS-173, © EPFL, Spring 2025

Memory reference
FSM (link)

R-type
FSM (link)

Branch if equal
FSM (link)

Control FSM
High-level view

70CS-173, © EPFL, Spring 2025

Instruction fetch (link) Instruction decode and
register (operand) fetch (link)

Labels on the arcs are
conditions tested to
determine which state
is the next state.

When the next state is
unconditional, no label
is given.

Labels inside nodes
indicate the output
signals asserted during
that state.

71

Control FSM
Outline

▪ Instruction fetch
• Identical for all instructions

▪ Instruction decode and operand fetch

▪ Memory reference FSM

▪ R-type FSM

▪ Branch if equal FSM

CS-173, © EPFL, Spring 2025

© EnelEva / Adobe Stock

Memory reference
FSM (link)

R-type
FSM (link)

Branch if equal
FSM (link)

Control FSM
Instruction Fetch

72CS-173, © EPFL, Spring 2025

Instruction fetch (link)

IorD
MemRead

IRWrite
ALUSrcA
ALUSrcB
ALUOp

PCSource
PCWrite

Instruction decode and
register (operand) fetch (link)

© EnelEva / Adobe Stock

73

Control FSM
Outline

▪ Instruction fetch

▪ Instruction decode and operand fetch
• Identical for all instructions

▪ Memory reference FSM

▪ R-type FSM

▪ Branch if equal FSM

CS-173, © EPFL, Spring 2025

Memory reference
FSM (link)

Instruction decode and
register (operand) fetch (link)

IorD
MemRead

IRWrite
ALUSrcA
ALUSrcB
ALUOp

PCSource
PCWrite

ALUSrcA
ALUSrcB
ALUOp

Instruction fetch (link)

R-type
FSM (link)

Branch if equal
FSM (link)

Control FSM
Instruction decode and operand fetch

74CS-173, © EPFL, Spring 2025

▪ Recall: Performing optimistic
actions, while waiting for
the instruction to be decoded

▪ (1) Read from the register file and
(2) Compute the branch target
address

• Set ALUSrcA to zero (PC sent to ALU)

• Set ALUSrcB so that the offset is sent
to the ALU

• Set ALUOp so that the ALU adds

75

Control FSM
Outline

▪ Instruction fetch

▪ Instruction decode and register fetch

▪ Memory reference FSM

▪ R-type FSM

▪ Branch if equal FSM

CS-173, © EPFL, Spring 2025

© EnelEva / Adobe Stock

Memory reference
FSM (link)

Instruction decode and
register (operand) fetch (link)

IorD
MemRead

IRWrite
ALUSrcA
ALUSrcB
ALUOp

PCSource
PCWrite

ALUSrcA
ALUSrcB
ALUOp

Instruction fetch (link)

R-type
FSM (link)

Branch if equal
FSM (link)

Control FSM
Memory Reference

76CS-173, © EPFL, Spring 2025

77

Memory Reference FSM
Address computation

▪ Recall: ALU adding the operands
to form the memory address

• Set ALUSrcA to 1, so that register A
is the first ALU input

• Set ALUSrcB so that the output of
the offset generation unit is
the second ALU input

• Set ALUOp so that the ALU adds

CS-173, © EPFL, Spring 2025

State 1

Memory address
computation (link)

State 0

ALUSrcA
ALUSrcB
ALUOp

78

Memory Reference FSM
Load or Store

CS-173, © EPFL, Spring 2025

State 1

Memory address
computation (link)

Memory load
(link)

State 0

ALUSrcA
ALUSrcB
ALUOp

IorD
MemRead

▪ Recall: Memory address was
computed in the previous cycle
and saved in ALUOut

• For memory load, assert MemRead

• Set IorD to 1 to force the address to
come from the ALUout rather than
from the PC

79

Memory Reference FSM
Load or Store

CS-173, © EPFL, Spring 2025

State 1

Memory address
computation (link)

Memory load
(link)

Memory store
(link)

State 0

ALUSrcA
ALUSrcB
ALUOp

IorD
MemRead

IorD
MemWrite

▪ Recall: Memory address was
computed in the previous cycle
and stored in ALUOut

• For memory store, assert MemWrite

• Set IorD to 1 to force the address to
come from the ALUout rather than
from the PC

80

Memory Reference FSM
Memory load completion

CS-173, © EPFL, Spring 2025

State 1

Memory address
computation (link)

Memory load
(link)

Memory store
(link)

Memory read
completion

(link)

State 0

ALUSrcA
ALUSrcB
ALUOp

IorD
MemRead

IorD
MemWrite

RegWrite
MemtoReg

▪ Recall: Write the load data,
which was stored in MDR in
the previous cycle, into
the register file

• Set MemtoReg to 1, to write the data
loaded from memory instead of
from the ALUOut

• Assert RegWrite to cause a write to
the register file

81

Control FSM
Outline

▪ Instruction fetch

▪ Instruction decode and register fetch

▪ Memory reference FSM

▪ R-type FSM

▪ Branch if equal FSM

CS-173, © EPFL, Spring 2025

© EnelEva / Adobe Stock

Memory reference
FSM (link)

Instruction decode and
register (operand) fetch (link)

IorD
MemRead

IRWrite
ALUSrcA
ALUSrcB
ALUOp

PCSource
PCWrite

ALUSrcA
ALUSrcB
ALUOp

Instruction fetch (link)

R-type
FSM (link)

Branch if equal
FSM (link)

Control FSM
R-type

82CS-173, © EPFL, Spring 2025

83

R-type FSM

CS-173, © EPFL, Spring 2025

State 1

State 0

Execution
(link)

ALUSrcA
ALUSrcB
ALUOp

▪ Recall: ALU is performing
the operation on two values
read from the register file in
the previous cycle

• Set ALUSrcA to 1 and ALUSrcB
so that both ALU operands are
from the register file

• Set ALUOp so that the funct field
from the instruction register is used
to determine the ALU operation
(add, sub, and, or)

84

R-type FSM
Final

CS-173, © EPFL, Spring 2025

State 1

State 0

Execution
(link)

ALUSrcA
ALUSrcB
ALUOp

R-type completion
(link)

RegWrite
MemtoReg

▪ Recall: An arithmetic-logical
instruction writes its result
to the register file

• Assert RegWrite to write to the
register file

• Set MemtoReg to zero, so that
the output of the ALUOut is written
into the register file, as opposed to
the MDR

85

Control FSM
Outline

▪ Instruction fetch

▪ Instruction decode and register fetch

▪ Memory reference FSM

▪ R-type FSM

▪ Branch if equal FSM

CS-173, © EPFL, Spring 2025

© EnelEva / Adobe Stock

Memory reference
FSM (link)

Instruction decode and
register (operand) fetch (link)

IorD
MemRead

IRWrite
ALUSrcA
ALUSrcB
ALUOp

PCSource
PCWrite

ALUSrcA
ALUSrcB
ALUOp

Instruction fetch (link)

R-type
FSM (link)

Branch if equal
FSM (link)

Control FSM
Branch if Equal

86CS-173, © EPFL, Spring 2025

87

Branch FSM
Final

CS-173, © EPFL, Spring 2025

State 1

State 0

Branch completion
(link)

ALUSrcA
ALUSrcB
ALUOp

PCWriteCond
PCSource

▪ Recall: ALU operates on the operands
prepared in the previous cycle,
performing a function depending on
the instruction class

• Set ALUSrcA to 1 and ALUSrcB so that both
ALU operands are from the register file

• Set ALUOp so that ALU subtracts

• Assert PCWriteCond to conditionally update
the PC if the Zero output of the ALU
is asserted

• Set PCSource to 1 so the value written into
PC comes from ALUOut, which holds
the branch target address computed in
the previous cycle

CS-173, © EPFL, Spring 2025 88

Complete
Finite State Machine
Multicycle CPU

89CS-173, © EPFL, Spring 2025

© EnelEva / Adobe Stock

90

Recall:
A Simple Multicycle CPU

CS-173, © EPFL, Spring 2025
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

91

Finite State Machine
Complete

CS-173, © EPFL, Spring 2025
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

92

How Many is Multi?

▪ Q: How many cycles do R-type, memory load, memory store, and
branch if equal instructions take in our simple multicycle CPU?

▪ A:
• R-type: 4 cycles

• Memory load: 5 cycles

• Memory store: 4 cycles

• Branch: 3 cycles

CS-173, © EPFL, Spring 2025

93

CPI in a Multicycle CPU

▪ Given the multicycle CPU implementation and the following mix
of instructions in a program, find the corresponding CPI:
• 20% memory loads

• 8% memory stores

• 10% branches

• 62% ALU (the rest of the mix)

CS-173, © EPFL, Spring 2025

94

CPI in a Multicycle CPU
Solution

▪ CPU cycles = Instruction count × CPI

▪ CPI = CPU cycles / Instruction count

▪ Therefore, CPI = 0.20×5 + 0.08×4 + 0.10×3 + 0.62×4 = 4.10

▪ This CPI is better (lower) than if all the instructions were to take
the same number of clock cycles (here, five)

CS-173, © EPFL, Spring 2025

CPU cycles
Instructions

for a program
Average clock cycles

per instruction

95

Literature

CS-173, © EPFL, Spring 2025

▪ Chapter 4: The Processor
▪ 4.5

Visit online: Link

https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view
https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view

The End

CS-173 Fundamentals of Digital Systems

Mirjana Stojilović

Spring 2025

https://mirjanastojilovic.github.io/cs173/index.html

