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Recall: Single-Cycle vs. Multicycle CPU

▪ If all instruction steps are performed in a single clock cycle, 
we have a single-cycle CPU implementation
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The longest combinational 
path (the critical path) 

determines the maximum 
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be the same one (e.g., PC)



Critical path is
now reduced

Critical path is
now reduced

▪ Alternative implementation is a multicycle CPU
• In a multi-cycle implementation, one or more instruction steps take one 

clock cycle, and consequently, some instructions take multiple clock cycles
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Recall: Single-Cycle vs. Multicycle CPU
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be the same one (e.g., PC)

Note: This is an example;
Other multi-cycle 
implementations
are also possible
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Recall: Is Single-Cycle CPU More Efficient?

▪ No. Every instruction takes one cycle. fmax is limited by the longest of all 
paths that instructions take (the critical path).

▪ In a multi-cycle CPU, one or more instruction steps take one cycle. 
fmax increases as the critical path is shorter now. 
Instructions that require fewer steps will likely be executed faster, 
reducing the program's overall execution time.
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Recall: Multicycle CPU
vs. Single-Cycle CPU

▪ A single memory unit for both instructions and data
• Why? Having more than one cycle available (more time to read 

instructions, read/write data) allows memory sharing

▪ A single ALU instead of an ALU and two adders
• Why? The same ALU can be used in different clock cycles

▪ Additional registers to hold the outputs of the functional units 
until the value is used (consumed) in a subsequent clock cycle
• Why? Ensure that the value to be used is “stable” for the entire cycle
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Recall: A Simple Multicycle CPU

▪ Recall: Let us build a simple CPU supporting the following subset
of RISC-V instructions for simplicity

• R-type arithmetic-logical instructions

• add, sub, and, or

• Memory instructions

• load  and store word

• Control flow

• branch if equal
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Recall:
A Simple Multicycle CPU
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Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.



9

Recall: Additional Registers
Multicycle CPU Datapath, High-level View
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A register for ALU output

One register per output
of the register file, to hold
the operands for the ALU

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

Instruction register (IR) – for the 32-bit 
instruction word read from memory

Memory data register (MDR)– for the 32-bit 
data word read from memory



Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.
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Recall: Additional Multiplexers
Sharing Functional Units
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A MUX to select between PC and ALU output for the next memory address

A MUX to select between the PC
and a register from the register file

A 3-input MUX to allow
the ALU to increment

the PC by 4 or compute 
branch target address
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Recall: A Multicycle CPU
With Some Control Lines Shown
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Determines if
the address to
the memory is 
supplied from ALUOut
register or the PC
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Recall: A Multicycle CPU
With Some Control Lines Shown
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If asserted, memory 
contents designated 
by the address input 
are put on the output

If asserted, memory 
contents designated 
by the address input 
are replaced by
the value on the 
Write data input



13

Recall: A Multicycle CPU
With Some Control Lines Shown
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The output of
the memory is  written 
into the instruction 
register (IR)

If asserted, the register 
on the Write reg. input 
is written with the value 
on the Write data input

Determines if the value fed to 
the register file Write data input 
comes from the ALUOut
register or from the memory 
data register (MDR)
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Recall: A Multicycle CPU
With Some Control Lines Shown
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Determines whether 
the first ALU operand 
is register A
or the PC

Determines whether 
the second ALU 
operand is register B, 
constant 4, or the sign-
extended immediate
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Recall: A Multicycle CPU
With Some Control Lines Shown
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Determines if ALU 
performs addition
(PC = PC+4, or branch 
target address), 
subtraction 
(comparing two 
registers for a branch 
if equal instruction), 
or another operation



Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.
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Recall:
Multicycle CPU Control
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The opcode field of
the instruction (register IR) 
determines the operation
of the ALU via ALUOp
(if not an R-type instruction, 
but memory access or branch)



Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.
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Recall:
Multicycle CPU Control
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Selects the next PC value: 
PC + 4 or branch target address

Unconditional PC write: 
PCwrite causes an 
unconditional write of 
the PC, during normal 
increment (PC = PC + 4)

Conditional PC write: 
PCWriteCond causes
a write of the PC if
the branch condition
is also true (if the Zero 
output from the ALU
is also active).



Signal name Effect

RegWrite If asserted, the register on the Write reg. input is written with the value on the Write 
data input

ALUSrcA Determines whether the first ALU operand is register A or the PC

MemRead If asserted, memory contents designated by the address input are put on the output

MemWrite If asserted, memory contents designated by the address input are replaced by
the value on the Write data input

MemtoReg Determines if the value fed to the register file Write data input comes from
the ALUOut register or from the memory data register (MDR)

IorD Determines if the address to the memory is supplied from ALUOut register or the PC

IRWrite The output of the memory is written into the instruction register (IR)

PCWrite The PC is written; the source is controlled by PCSource

PCWriteCond The PC is written if the Zero output from the ALU is also active
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Recall: Actions of the 1-bit Control Signals
Summary
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Signal name Value Effect

ALUOp 00 addition

01 subtraction

10 The funct field of the instruction determines the operation of the ALU
(distinction between add, sub, and, and or; they all share the same opcode)

ALUSrcB 00 The second input to the ALU comes from the register B

01 The second input to the ALU is the constant 4

10 The second input to the ALU is the immediate generated from the instruction 
register (IR)

PCSource 00 Output of the ALU (PC+4) is sent to the PC for writing

01 The contents of the ALUOut register (the branch target address) 
are sent to the PC for writing

10 Additional functionality (not covered in this example, ignore)
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Recall: Actions of the 2-bit Control Signals
Summary
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Let's Talk About
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• Breaking the instruction execution into cycles

• Multicycle CPU FSM
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Learning Outcomes

▪ List the instruction steps and explain them

▪ Draw and explain the multicycle CPU FSM

▪ Quantify and compare CPU performance
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Quick Outline

▪ Instruction execution steps
• Instruction fetch

• Instruction decode and operand fetch

• Execution, memory address computation, 
or branch completion

• Memory access or R-type instruction completion

• Memory read completion step

▪ Multicycle CPU FSM

▪ Complete FSM

▪ Example: Compute CPI in our multicycle CPU

CS-173, © EPFL, Spring 2025



24

Instruction Execution Across Cycles

▪ To determine which control signals are needed and their setting, 
we need to look at what should happen in each CPU cycle

▪ When deciding how to break instruction execution into cycles,
the goal is performance

▪ We break execution into a series of steps, each taking one cycle, 
attempting to keep the amount of work per cycle roughly equal
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Instruction Execution Across Cycles
Contd.

▪ Let us restrict each step to contain at most

• one memory access

• one register file access

• an ALU operation

▪ The CPU cycle could be as short as the longest of the above

▪ At the end of every CPU cycle, any data needed on a subsequent 
cycle must be stored in a register

▪ Edge-triggered design: We can continue to read the current value 
of a register; the new value does not appear until the next cycle
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Instruction Execution Across Cycles
Contd.

▪ Values required by subsequent cycles must be kept constant for 
the duration of at least the subsequent cycle:
• Major state elements

• Program counter: PC

• Register file, memory

• Temporary registers that are written on every clock cycle
• At the output of the register file: A and B

• At the memory output, memory data register: MDR

• At the output of the ALU: ALUOut

• Temporary register with write control

• Instruction register: IR
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In a Single-Cycle CPU Datapath…

▪ Each instruction uses a set of datapath elements to carry out 
its execution

▪ Many of the datapath elements operate in series, 
using the output of another element as an input

▪ Some datapath elements operate in parallel:
• E.g., PC is incremented and the instruction is read at the same time
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In a Multicycle CPU Datapath…

▪ All operations in one instruction step occur in parallel
within one clock cycle

▪ Successive instruction steps operate in series
in different clock cycles

▪ The limitation of one ALU operation, one memory access, 
and one register file access determines what can "fit" in 
one instruction step (one cycle)
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Breaking the Instruction Execution…
…into Clock (CPU) Cycles

Five steps

▪ Instruction fetch

▪ Instruction decode and register (operand) fetch

▪ Execution, memory address computation, or branch completion

▪ Memory access or R-type instruction completion

▪ Memory read completion

CS-173, © EPFL, Spring 2025
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Step 1
Instruction Fetch

▪ Fetch the instruction from memory and compute the address of the next 
instruction in the program sequence
• IR <= Memory [PC]

• PC <= PC + 4

▪ Operation
• Send the PC to the memory as the address, perform a memory read, 

and write the fetched instruction to the Instruction Register (IR)

• Increment the PC by four to prepare for the subsequent instruction

• Save the incremented instruction address in the PC

CS-173, © EPFL, Spring 2025

Note: deliberate use of nonblocking Verilog 
operator symbol <=; it indicates that right-

hand sides are evaluated and then all 
assignments are made, which is effectively 

how the hardware executes during the cycle
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Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

Step 1
Instruction Fetch

Assert MemRead

Set IorD to zero, 
to select the PC as 
the source of the 
memory address

Assert IRWrite

Set ALUSrcA,
ALUSrcB, and 
ALUOp so that
the ALU computes 
PC = PC + 4
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Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

Step 1
Instruction Fetch

Update PC: 
- set PCWrite
- set PCSource to zero

PC increment and instruction 
memory access occur in 
parallel. The new PC value is 
not visible until the next 
cycle. Incremented PC will 
also be saved in ALUOut, but 
this action is harmless.
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Step 1: Summary
Instruction Fetch

▪ Operations and control signals involved
• IorD: Select PC as the source address

• MemRead: Perform a memory read

• IRWrite: Write the instruction from the memory into the Instruction Register

• Increment the PC by four

• ALUSrcA: Send the PC to the first input of the ALU

• ALUSrcB: Send 4 to the second input of the ALU

• ALUOp: Instruct ALU to perform addition

• Save the incremented instruction address in the PC

• PCSource: Send ALU output to the PC

• PCWrite: Write to the PC
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Step 2
Instruction Decode and Register (Operand) Fetch

▪ In the previous and this step, we do not yet know what the instruction is

▪ We can only perform actions that are either
• Applicable to all instructions (e.g., fetching the instruction in step 1) or

• Not harmful, in case the instruction isn't what we think it might be

▪ What can we do?

▪ (1) Can read rs1 and rs2 registers

• It's not harmful to read them, even if not necessary

• Those values may be needed later, so we keep them in temporary registers A and B

CS-173, © EPFL, Spring 2025
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Step 2
Instruction Decode and Register (Operand) Fetch

▪ In the previous and this step, we do not yet know what the instruction is

▪ We can only perform actions that are either
• Applicable to all instructions (e.g., fetching the instruction in step 1) or

• Not harmful, in case the instruction isn't what we think it might be

▪ What else can we do?

▪ (2) Can compute branch target address with the ALU
• It's not harmful because we can ignore this value if the instruction turned out

not to be a branch

• The value may be needed later, so we keep it in register ALUOut
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Step 2
Instruction Decode and Register (Operand) Fetch

▪ Q: Why do these optimistic actions?

▪ A: Performing "optimistic" actions early helps decrease 
the number of cycles needed to execute an instruction

▪ Q: What makes doing these optimistic actions possible?

▪ A: The regularity of the instruction formats
• For example, if the instruction has two register operands, 

they are always in the rs1 and rs2 fields
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Step 2
Instruction Decode and Register (Operand) Fetch

▪ Recall: Step 2 performs a few “optimistic” actions, as they do not hurt, but 
may prove helpful later when it is known what the instruction is
• A <= RF[Instruction Register[19:15]]

• B <= RF[Instruction Register[24:20]]

• ALUOut <= PC + offset

▪ Operations
• Access register file (RF) and read registers rs1 and rs2

• Write to registers A and B; they are overwritten every clock cycle

• Compute the branch target address and place it in the ALUOut register, 
from where it will be read in the next clock cycle if the instruction is a branch
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Step 2
Instruction Decode and Register (Operand) Fetch

Set ALUSrcA to zero 
(PC sent to ALU)

Set ALUOp so that 
the ALU adds

Set ALUSrcB so that 
the offset is sent to
the ALU

Register file access and 
computation of branch 
target occur in parallel
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Step 2: Summary
Instruction Decode and Register (Operand) Fetch

▪ Operations and control signals involved
• Access the register file and read registers rs1 and rs2

• Write to the registers A and B; they are overwritten every clock cycle

• Compute the branch target address and place it in the ALUOut register, 
from where it will be read on the next clock cycle if the instruction is a branch

• ALUSrcA: PC sent to the ALU

• ALUSrcB: PC offset (for computing branch target address) sent to the ALU

• ALUOp: ALU instructed to perform addition

• The register file access and branch target address computation occur in parallel

CS-173, © EPFL, Spring 2025
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Step 3
Execution, Memory Address Computation, or Branch Completion

▪ ALU operates on the operands prepared in the previous cycle, 
performing a function depending on the instruction class

• Memory address computation (load, store) or

• Arithmetic-logical instruction (R-type) or

• Branch if equal

CS-173, © EPFL, Spring 2025
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Step 3
Memory Address Computation

▪ Recall: ALU operates on the operands prepared in the previous cycle, 
performing a function depending on the instruction class

▪ Memory address computation
• ALU adding the operands to form the memory address

CS-173, © EPFL, Spring 2025
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ALU is adding
the operands to form 
the memory address

Set ALUSrcA to 1, 
so that register A is 
the first ALU input

Set ALUSrcB so that 
the output of 
the offset generation 
unit is the second 
ALU input

Set ALUOp so that
the ALU adds

Step 3
Memory Address Computation
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Step 3: Summary
Memory Address Computation

Memory address computation—operations and the control signals involved
• ALU adding the operands to form the memory address

• ALUSrcA: First ALU input is register A

• ALUSrcB: Second ALU input is the offset

• ALUOp: ALU instructed to perform addition

CS-173, © EPFL, Spring 2025
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Step 3
R-type instruction execution

▪ Recall: ALU operates on the operands prepared in the previous cycle, 
performing a function depending on the instruction class

▪ Arithmetic-logical instruction (R-type)
• ALUOut <= A op B

• ALU performing the operation specified by the opcode

▪ Recall: Distinction between add, sub, and, and or cannot be made based
on the opcode (it is the same!); the funct field serves the purpose

CS-173, © EPFL, Spring 2025
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ALU is performing
the operation on two 
values read from
the register file in
the previous cycle

Set ALUSrcA to 1 and 
ALUSrcB so that both 
ALU operands are from 
the register file

Set ALUOp so that 
funct field from the IR 
is used to determine 
the ALU operation
(add, sub, and, or)

Step 3
R-type instruction execution
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Step 3: Summary
R-type instruction execution

▪ Arithmetic-logical instruction (R-type)—operations and the control signals
• ALUOut <= A op B

• ALU performing the operation specified by the funct field

• ALUSrcA: First ALU input is register A

• ALUSrcB: Second ALU input is register B

• ALUOp: ALU operation determined by the funct field

CS-173, © EPFL, Spring 2025
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Step 3
Branch Completion

▪ Recall: ALU operates on the operands prepared in the previous cycle, 
performing a function depending on the instruction class

▪ Branch if equal
• if (A == B) PC <= ALUOut

• ALU subtracts registers A and B; 

• Zero output is asserted if A equals B;  

• If Zero output is asserted, and the instruction is beq, PC is updated with
the value coming from the ALUOut register

CS-173, © EPFL, Spring 2025
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Set ALUSrcA to 1 and 
ALUSrcB so that both 
ALU operands are from 
the register file

Set ALUOp so that  
ALU subtracts

Step 3
Branch Completion
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Assert PCWriteCond to 
update the PC if
the Zero output of
the ALU is asserted

Set PCSource to 1 so 
the value written into 
PC comes from 
ALUOut, which holds 
the branch target 
address computed in 
the previous cycle

Step 3
Branch Completion
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Step 3: Summary
Branch Completion

▪ Branch if equal—operations and the control signals involved
• ALU is used to compare two registers; 

if they are equal, the branch is taken; otherwise, the branch is not taken

• ALUSrcA: First ALU input is register A

• ALUSrcB: Second ALU input is register B

• ALUOp: ALU instructed to perform subtraction

• Zero output asserted if A equals B

• If Zero output is asserted

• PCWriteCond: Update the PC

• PCSource: The input of the PC is the output of the ALUOut register
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Step 4
Memory Access or R-type Instruction Completion

▪ A load or store instruction accesses memory, or an arithmetic-
logical instruction writes its result to the register file

• Memory load

• Memory store

• R-type

CS-173, © EPFL, Spring 2025
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Step 4
Memory Access

▪ Recall: A load or store instruction accesses memory, or an arithmetic-logical 
instruction writes its result to the register file

▪ Memory load
• Memory Data Register = Memory[ALUOut]

• Memory address comes from the ALUOut; memory read

▪ Memory store
• Memory[ALUOut] <= B

• Memory address comes from the ALUOut; memory write

CS-173, © EPFL, Spring 2025
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Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

Step 4
Memory Access

The address was computed 
during the previous cycle and 
stored in ALUOut

For memory load, 
assert MemRead

For memory store, 
assert MemWrite

Set IorD to 1 to force
the address to come
from the ALUout rather than 
from the PC

MDR is overwritten in every 
clock cycle (no harm in that)
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Step 4: Summary
Memory Access

▪ Memory load—operations and control signals involved
• Memory Data Register = Memory[ALUOut]

• IorD: Memory address comes from the ALUOut register rather than the PC

• MemRead: Reading from the memory

▪ Memory store—operations and control signals involved
• Memory[ALUOut] <= B

• IorD: Memory address comes from the ALUOut register rather than the PC

• MemWrite: Writing to the memory

CS-173, © EPFL, Spring 2025
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Step 4
R-type Instruction Completion

▪ Recall: A load or store instruction accesses memory, or an arithmetic-logical 
instruction writes its result to the register file

▪ R-type
• Reg[Instruction Register[11:7]] <= ALUOut

• Copy ALUOut to the register file

CS-173, © EPFL, Spring 2025
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Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

Step 4
R-type Instruction Completion

Assert RegWrite to 
write to the register file

Set MemtoReg to zero, 
so that the output of 
the ALUOut is written 
into the register file, as 
opposed to the MDR
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Step 4: Summary
R-type Instruction Completion

▪ R-type—operations and control signals involved
• Reg[Instruction Register[11:7]] <= ALUOut

• Use Instruction Register [11:7] as the index of the register (in the register file) to write to

• RegWrite: Write to the register file

• MemtoReg: The value from the ALUOut register and not the value from
the Memory Data Register is to be written to the register file
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Step 5
Memory Read Completion Step

▪ Memory Load (read) completes by writing the value from the memory data 
register to the register file
• Reg[Instruction Register[11:7]] <= Memory Data Register

• Write the data, which was placed in the Memory Data Register in the previous cycle, 
into the register file

CS-173, © EPFL, Spring 2025
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Step 5
Memory Read Completion Step

Write the load data, 
which was stored in MDR 
in the previous cycle, 
into the register file

Set MemtoReg to 1, 
to write the data loaded
from memory instead
of from the ALUOut

Assert RegWrite to
cause a write to
the register file
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Step 5: Summary
Memory Read Completion Step

▪ Operations and control signals involved:
• RegWrite: Write to the register file

• MemtoReg: The data to write is the value from the Memory Data Register
and not the value from the ALUOut register

CS-173, © EPFL, Spring 2025
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Done Breaking the Instruction Execution…
…into Clock (CPU) Cycles

Five steps

▪ Instruction fetch

▪ Instruction decode and register (operand) fetch

▪ Execution, memory address computation, or branch completion

▪ Memory access or R-type instruction completion

▪ Memory read completion

What is next?
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Defining the Control:
Finite State Machine
Multicycle CPU
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Recall: Breaking the Instruction Execution…
…into Clock Cycles

▪ Now that we have determined what the control signals are and
when they must be asserted, we can implement the control unit

▪ The control for the multicycle CPU must specify both the signals
to be set in any step (cycle) and the next step in the sequence

CS-173, © EPFL, Spring 2025



Memory reference
FSM (link)

R-type
FSM (link)

Branch if equal
FSM (link)

Control FSM
High-level view
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Instruction fetch (link) Instruction decode and 
register (operand) fetch (link)

Labels on the arcs are 
conditions tested to 
determine which state 
is the next state.

When the next state is 
unconditional, no label 
is given.

Labels inside nodes 
indicate the output 
signals asserted during 
that state.
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Control FSM
Outline

▪ Instruction fetch
• Identical for all instructions

▪ Instruction decode and operand fetch

▪ Memory reference FSM

▪ R-type FSM

▪ Branch if equal FSM

CS-173, © EPFL, Spring 2025
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Memory reference
FSM (link)

R-type
FSM (link)

Branch if equal
FSM (link)

Control FSM
Instruction Fetch
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Instruction fetch (link)

IorD
MemRead

IRWrite
ALUSrcA
ALUSrcB
ALUOp

PCSource
PCWrite

Instruction decode and 
register (operand) fetch (link)
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Control FSM
Outline

▪ Instruction fetch

▪ Instruction decode and operand fetch
• Identical for all instructions

▪ Memory reference FSM

▪ R-type FSM

▪ Branch if equal FSM

CS-173, © EPFL, Spring 2025



Memory reference
FSM (link)

Instruction decode and 
register (operand) fetch (link)

IorD
MemRead

IRWrite
ALUSrcA
ALUSrcB
ALUOp

PCSource
PCWrite

ALUSrcA
ALUSrcB
ALUOp

Instruction fetch (link)

R-type
FSM (link)

Branch if equal
FSM (link)

Control FSM
Instruction decode and operand fetch
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▪ Recall: Performing optimistic 
actions, while waiting for
the instruction to be decoded

▪ (1) Read from the register file and 
(2) Compute the branch target 
address

• Set ALUSrcA to zero (PC sent to ALU)

• Set ALUSrcB so that the offset is sent 
to the ALU

• Set ALUOp so that the ALU adds
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Control FSM
Outline

▪ Instruction fetch

▪ Instruction decode and register fetch

▪ Memory reference FSM

▪ R-type FSM

▪ Branch if equal FSM
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Memory reference
FSM (link)

Instruction decode and 
register (operand) fetch (link)

IorD
MemRead

IRWrite
ALUSrcA
ALUSrcB
ALUOp

PCSource
PCWrite

ALUSrcA
ALUSrcB
ALUOp

Instruction fetch (link)

R-type
FSM (link)

Branch if equal
FSM (link)

Control FSM
Memory Reference
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Memory Reference FSM
Address computation

▪ Recall: ALU adding the operands 
to form the memory address

• Set ALUSrcA to 1, so that register A 
is the first ALU input

• Set ALUSrcB so that the output of 
the offset generation unit is
the second ALU input

• Set ALUOp so that the ALU adds

CS-173, © EPFL, Spring 2025

State 1

Memory address
computation (link)

State 0

ALUSrcA
ALUSrcB
ALUOp
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Memory Reference FSM
Load or Store
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State 1

Memory address
computation (link)

Memory load
(link)

State 0

ALUSrcA
ALUSrcB
ALUOp

IorD
MemRead

▪ Recall: Memory address was
computed in the previous cycle
and saved in ALUOut

• For memory load, assert MemRead

• Set IorD to 1 to force the address to 
come from the ALUout rather than 
from the PC
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Memory Reference FSM
Load or Store
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State 1

Memory address
computation (link)

Memory load
(link)

Memory store
(link)

State 0

ALUSrcA
ALUSrcB
ALUOp

IorD
MemRead

IorD
MemWrite

▪ Recall: Memory address was
computed in the previous cycle
and stored in ALUOut

• For memory store, assert MemWrite

• Set IorD to 1 to force the address to 
come from the ALUout rather than 
from the PC
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Memory Reference FSM
Memory load completion
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State 1

Memory address
computation (link)

Memory load
(link)

Memory store
(link)

Memory read
completion 

(link)

State 0

ALUSrcA
ALUSrcB
ALUOp

IorD
MemRead

IorD
MemWrite

RegWrite
MemtoReg

▪ Recall: Write the load data, 
which was stored in MDR in
the previous cycle, into
the register file

• Set MemtoReg to 1, to write the data 
loaded from memory instead of 
from the ALUOut

• Assert RegWrite to cause a write to 
the register file 
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Control FSM
Outline

▪ Instruction fetch

▪ Instruction decode and register fetch

▪ Memory reference FSM

▪ R-type FSM

▪ Branch if equal FSM
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Memory reference
FSM (link)

Instruction decode and 
register (operand) fetch (link)

IorD
MemRead

IRWrite
ALUSrcA
ALUSrcB
ALUOp

PCSource
PCWrite

ALUSrcA
ALUSrcB
ALUOp

Instruction fetch (link)

R-type
FSM (link)

Branch if equal
FSM (link)

Control FSM
R-type
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R-type FSM
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State 1

State 0

Execution
(link)

ALUSrcA
ALUSrcB
ALUOp

▪ Recall: ALU is performing
the operation on two values
read from the register file in
the previous cycle

• Set ALUSrcA to 1 and ALUSrcB
so that both ALU operands are
from the register file 

• Set ALUOp so that the funct field 
from the instruction register is used 
to determine the ALU operation 
(add, sub, and, or)
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R-type FSM
Final

CS-173, © EPFL, Spring 2025

State 1

State 0

Execution
(link)

ALUSrcA
ALUSrcB
ALUOp

R-type completion
(link)

RegWrite
MemtoReg

▪ Recall: An arithmetic-logical 
instruction writes its result
to the register file

• Assert RegWrite to write to the 
register file 

• Set MemtoReg to zero, so that
the output of the ALUOut is written
into the register file, as opposed to 
the MDR
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Control FSM
Outline

▪ Instruction fetch

▪ Instruction decode and register fetch

▪ Memory reference FSM

▪ R-type FSM

▪ Branch if equal FSM

CS-173, © EPFL, Spring 2025

© EnelEva / Adobe Stock



Memory reference
FSM (link)

Instruction decode and 
register (operand) fetch (link)

IorD
MemRead

IRWrite
ALUSrcA
ALUSrcB
ALUOp

PCSource
PCWrite

ALUSrcA
ALUSrcB
ALUOp

Instruction fetch (link)

R-type
FSM (link)

Branch if equal
FSM (link)

Control FSM
Branch if Equal
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Branch FSM
Final
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State 1

State 0

Branch completion
(link)

ALUSrcA
ALUSrcB
ALUOp

PCWriteCond
PCSource

▪ Recall: ALU operates on the operands 
prepared in the previous cycle, 
performing a function depending on
the instruction class

• Set ALUSrcA to 1 and ALUSrcB so that both 
ALU operands are from the register file

• Set ALUOp so that ALU subtracts

• Assert PCWriteCond to conditionally update 
the PC if the Zero output of the ALU
is asserted 

• Set PCSource to 1 so the value written into 
PC comes from ALUOut, which holds
the branch target address computed in
the previous cycle
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Complete
Finite State Machine
Multicycle CPU
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Recall:
A Simple Multicycle CPU

CS-173, © EPFL, Spring 2025
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.
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Finite State Machine
Complete

CS-173, © EPFL, Spring 2025
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.
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How Many is Multi?

▪ Q: How many cycles do R-type, memory load, memory store, and 
branch if equal instructions take in our simple multicycle CPU?

▪ A:
• R-type: 4 cycles

• Memory load: 5 cycles

• Memory store: 4 cycles

• Branch: 3 cycles
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CPI in a Multicycle CPU

▪ Given the multicycle CPU implementation and the following mix 
of instructions in a program, find the corresponding CPI:
• 20% memory loads

• 8% memory stores

• 10% branches

• 62% ALU (the rest of the mix)
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CPI in a Multicycle CPU
Solution

▪ CPU cycles =           Instruction count  × CPI

▪ CPI = CPU cycles / Instruction count

▪ Therefore, CPI = 0.20×5 + 0.08×4 + 0.10×3 + 0.62×4 = 4.10

▪ This CPI is better (lower) than if all the instructions were to take
the same number of clock cycles (here, five)
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CPU cycles
Instructions

for a program
Average clock cycles

per instruction
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Literature

CS-173, © EPFL, Spring 2025

▪ Chapter 4: The Processor
▪ 4.5

Visit online: Link

https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view
https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view
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